论文标题
$ \ {β\} $ - Adler函数的扩展,Bjorken SUM规则和Crewther-Broadhurst-Kataev的关系$ O(α_S^4)$
The $\{β\}$-expansion for Adler function, Bjorken Sum Rule, and the Crewther-Broadhurst-Kataev relation at order $O(α_s^4)$
论文作者
论文摘要
我们为$ \ {β\} $的元素提供明确的表达 - 非词列Adler $ d_a $ function和Bjorken Pallized Sum规则$ s^{bjp} $在N $^4 $中使用Chetyrkin在Chetyrkin的最新成绩中计算出的QCD QCD的最新量化结果,包括任何数量的QCCD。我们讨论了$ d_a $的$ \ {β\} $ - $ d_a $和$ s^{bjp} $的扩展,以较高的订单从Crewther [1]和BroadHurst-Kataev [2]关系中。
We derive explicit expressions for the elements of the $\{ β\}$-expansion for the nonsinglet Adler $D_A$-function and Bjorken polarized sum rules $S^{Bjp}$ in the N$^4$LO using recent results by Chetyrkin for these quantities computed within extended QCD including any number of fermion representations. We discuss the properties of the $\{ β\}$-expansion for $D_A$ and $S^{Bjp}$ at higher orders which follow from the Crewther [1] and the Broadhurst-Kataev [2] relation.