论文标题
关于亚历山德罗夫浸入平均曲率流的注释
A note on Alexandrov immersed mean curvature flow
论文作者
论文摘要
我们证明,浸入亚历山德罗夫的特性沿平均曲率流。此外,我们证明了在这种情况下,平均凸的嵌入式流量(如非汇合和梯度估计)的平均曲率流动技术也存在。我们还指出了布伦德尔(Brendle)工作的必要修改 - huisken允许亚历山德罗夫(Alexandrov)浸入$ 2 $维度设置的手术中平均曲率流量。
We demonstrate that the property of being Alexandrov immersed is preserved along mean curvature flow. Furthermore, we demonstrate that mean curvature flow techniques for mean convex embedded flows such as noncollapsing and gradient estimates also hold in this setting. We also indicate the necessary modifications to the work of Brendle--Huisken to allow for mean curvature flow with surgery for the Alexandrov immersed, $2$-dimensional setting.