论文标题

分形码:测量自旋模型和张量规理论

Fractons: gauging spin models and tensor gauge theory

论文作者

Bennett, Jason

论文摘要

本工作的目的 - 对间隙和无间隙分裂理论的文献综述 - 是在教学上填补了关于分裂的研究与本科物理教育(尤其是量子和统计力学)之间的差距。假定对古典田地理论的熟悉。我们将通过审查ISING模型的测量来开始这项工作以获取复式代码。然后,遵循分裂研究的时间顺序,我们将建立张开的分裂理论的测量旋转模型图片。接下来(在介绍晶格仪理论之后),我们将在描述无间隙分裂理论时介绍张量规理论方面的发展。然后,我们解释了偶极矩的保护是如何开发Fracton模型的现场理论描述的关键,并通过为衡量这种现场理论提供未来的工作计划来得出结论。最后,我们指出了另外两个未来的计划:一个是一个既定的理论进步,实际上启发了这项工作,另一个是超速原子物理学的令人兴奋的实验进步,这可能会导致对法拉克顿物理学的物理实现。这项工作的亮点包括:量规场动力学(野外强度/曲率)术语的衍生词在旋转系统中获得以获取复曲面代码的范围,减少了三个术语的kogut-susskind lattice Qed hamiltonian的hamiltonian的2个术语,以符合特定量表的态度和衡量量表之间的相应性,以证明仪表的对应关系。偶极矩的保护是从测量的旋转模型的角度看出的相同的固定性/分形现象学,以及在拉格朗日中多项式移位对称性和高阶空间衍生物的必要性的证明,以便具有双极矩保护。

The objective of the present work -- a literature review on both gapped and gapless fractonic theories -- is to pedagogically fill in the gaps between the research on fractons, and an undergraduate physics education (particularly quantum and statistical mechanics). Some familiarity with classical field theory is assumed. We will begin this work by reviewing the gauging of the Ising model to obtain the toric code. Then, following the chronological order of fracton research, we will establish the gauged spin model picture of gapped fracton theories. Next (after introducing lattice gauge theory) we will cover the developments on the tensor gauge theory front in describing gapless fracton theories. We then explain how conservation of dipole moment is key in the development of field-theoretic descriptions of fracton models, and conclude by providing future plans for work on gauging such field theories. Finally, we point out two more future plans: one being an established theoretical advance which in fact inspired this work, and the other being exciting experimental advances in ultracold atomic physics which could lead to the physical realization of fracton physics. Highlights of this work include: a derivation of the gauge field dynamics (field strength/curvature) term in the gauging of a spin system to obtain the toric code, a reduction of the 3 terms of the Kogut-Susskind lattice QED Hamiltonian to the 2 terms of the toric code, a proof of the correspondence between the invariance of a gauge field and a particular Gauss's law constraint in a tensor gauge theory context, a demonstration that conservation of dipole moment accounts for the same immobility/fractalization phenomenology that we also show from a gauged spin model perspective, and proof of the necessity for polynomial shift symmetries and higher-order spatial derivatives in a Lagrangian in order to have dipole moment conservation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源