论文标题
通过神经建筑搜索盲人恢复的多优先学习
Multi-Prior Learning via Neural Architecture Search for Blind Face Restoration
论文作者
论文摘要
盲人面部修复(BFR)旨在从低品质的图像中恢复高质量的面部图像,通常求助于面部先验,以改善恢复性能。但是,当前的方法仍然遇到两个主要困难:1)如何在不进行大规模调整的情况下得出强大的网络体系结构; 2)如何从一个网络中的多个面部先验捕获互补信息以提高恢复性能。为此,我们提出了一个面部修复搜索网络(FRSNET),以适应我们指定的搜索空间内的合适特征提取体系结构,这可以直接有助于恢复质量。在FRSNET的基础上,我们通过多个学习方案进一步设计了多个面部搜索网络(MFPSNET)。 MFPSNET最佳地从不同的面部先验中提取信息,并将信息融合到图像特征中,以确保保留外部指导和内部特征。这样,MFPSNet充分利用了语义级别(解析图),几何级别(面部热图),参考级别(面部词典)和像素级(降级图像)信息,从而产生忠实且现实的图像。定量和定性实验表明,MFPSNET在合成和现实世界数据集上对最先进的BFR方法表现出色。这些代码可公开可用:https://github.com/yyj1ang/mfpsnet。
Blind Face Restoration (BFR) aims to recover high-quality face images from low-quality ones and usually resorts to facial priors for improving restoration performance. However, current methods still suffer from two major difficulties: 1) how to derive a powerful network architecture without extensive hand tuning; 2) how to capture complementary information from multiple facial priors in one network to improve restoration performance. To this end, we propose a Face Restoration Searching Network (FRSNet) to adaptively search the suitable feature extraction architecture within our specified search space, which can directly contribute to the restoration quality. On the basis of FRSNet, we further design our Multiple Facial Prior Searching Network (MFPSNet) with a multi-prior learning scheme. MFPSNet optimally extracts information from diverse facial priors and fuses the information into image features, ensuring that both external guidance and internal features are reserved. In this way, MFPSNet takes full advantage of semantic-level (parsing maps), geometric-level (facial heatmaps), reference-level (facial dictionaries) and pixel-level (degraded images) information and thus generates faithful and realistic images. Quantitative and qualitative experiments show that MFPSNet performs favorably on both synthetic and real-world datasets against the state-of-the-art BFR methods. The codes are publicly available at: https://github.com/YYJ1anG/MFPSNet.