论文标题

使用机器学习协助的拉曼光谱法对最小制备的细菌表型进行准确而快速的识别

Accurate and fast identification of minimally prepared bacteria phenotypes using Raman spectroscopy assisted by machine learning

论文作者

Thomsen, Benjamin Lundquist, Christensen, Jesper B., Rodenko, Olga, Usenov, Iskander, Grønnemose, Rasmus Birkholm, Andersen, Thomas Emil, Lassen, Mikael

论文摘要

全球抗菌素耐药性(AMR)的增加是对人类健康的严重威胁。为了避免AMR的传播,快速可靠的诊断工具可以促进最佳的抗生素管理。在这方面,拉曼光谱法可以在一个步骤中快速标记和无培养物鉴定以及抗菌易感性测试(AST)。但是,尽管许多基于拉曼的细菌识别和AST研究表现出了令人印象深刻的结果,但仍必须解决一些缺点。为了弥合概念验证研究和临床应用之间的差距,我们与新型的数据效果算法相结合开发了机器学习技术,以快速鉴定微型制备的细菌表型和甲基甲基甲基甲基甲基甲基敏感蛋白敏感性(MS)细菌(MS)细菌(MS)细菌的区别。为此,我们为细菌的超光谱拉曼图像实施了光谱变压器模型。我们表明,在精确性和训练时间方面,我们的模型在许多分类问题上都优于标准卷积神经网络模型。对于六种MR-MS细菌物种,我们的数据集中达到了96美元以上的分类精度,该数据集由15个不同类别和95.6 $ \%$分类精度。更重要的是,我们的结果仅使用快速,易于生产的培训和测试数据获得

The worldwide increase of antimicrobial resistance (AMR) is a serious threat to human health. To avert the spread of AMR, fast reliable diagnostics tools that facilitate optimal antibiotic stewardship are an unmet need. In this regard, Raman spectroscopy promises rapid label- and culture-free identification and antimicrobial susceptibility testing (AST) in a single step. However, even though many Raman-based bacteria-identification and AST studies have demonstrated impressive results, some shortcomings must be addressed. To bridge the gap between proof-of-concept studies and clinical application, we have developed machine learning techniques in combination with a novel data-augmentation algorithm, for fast identification of minimally prepared bacteria phenotypes and the distinctions of methicillin-resistant (MR) from methicillin-susceptible (MS) bacteria. For this we have implemented a spectral transformer model for hyper-spectral Raman images of bacteria. We show that our model outperforms the standard convolutional neural network models on a multitude of classification problems, both in terms of accuracy and in terms of training time. We attain more than 96$\%$ classification accuracy on a dataset consisting of 15 different classes and 95.6$\%$ classification accuracy for six MR-MS bacteria species. More importantly, our results are obtained using only fast and easy-to-produce training and test data

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源