论文标题

一项关于深度步态识别的全面调查:算法,数据集和挑战

A Comprehensive Survey on Deep Gait Recognition: Algorithms, Datasets and Challenges

论文作者

Shen, Chuanfu, Yu, Shiqi, Wang, Jilong, Huang, George Q., Wang, Liang

论文摘要

步态识别旨在识别一个人的距离,以作为长途且较不合转行人识别的有前途的解决方案。最近,步态识别的重大进步通过使用深度学习技术在许多挑战的情况下取得了鼓舞人心的成功。在深层步态识别的背景下,在实验室数据集中取得了几乎完美的表现,许多最近的研究引入了步态识别的新挑战,包括强大的深层表示建模,野外步态识别,甚至来自新的视觉传感器(例如红外和深度摄像头)的认可。同时,步态识别的表现不断提高,也可能揭示了对社会的生物识别安全性和隐私预防的关注。我们使用深度学习以及关于步态生物识别技术的隐私和安全性的讨论提供了有关最近文献的全面调查。这项调查通过根据我们提出的分类法来回顾了现有的深层步态识别方法。拟议的分类法与将可用步态识别方法分类为模型或基于外观的方法的常规分类法不同,而我们的分类学层次结构从两个角度考虑了深层的步态识别:深层表示学习和深层网络架构,以说明当前的微型和移Macro级别的当前方法。我们还包括有关数据集的最新评论和有关各种情况的绩效评估。最后,我们介绍了有关步态生物识别技术的隐私和安全问题,并讨论了未来研究的杰出挑战和潜在方向。

Gait recognition aims to identify a person at a distance, serving as a promising solution for long-distance and less-cooperation pedestrian recognition. Recently, significant advancements in gait recognition have achieved inspiring success in many challenging scenarios by utilizing deep learning techniques. Against the backdrop that deep gait recognition has achieved almost perfect performance in laboratory datasets, much recent research has introduced new challenges for gait recognition, including robust deep representation modeling, in-the-wild gait recognition, and even recognition from new visual sensors such as infrared and depth cameras. Meanwhile, the increasing performance of gait recognition might also reveal concerns about biometrics security and privacy prevention for society. We provide a comprehensive survey on recent literature using deep learning and a discussion on the privacy and security of gait biometrics. This survey reviews the existing deep gait recognition methods through a novel view based on our proposed taxonomy. The proposed taxonomy differs from the conventional taxonomy of categorizing available gait recognition methods into the model- or appearance-based methods, while our taxonomic hierarchy considers deep gait recognition from two perspectives: deep representation learning and deep network architectures, illustrating the current approaches from both micro and macro levels. We also include up-to-date reviews of datasets and performance evaluations on diverse scenarios. Finally, we introduce privacy and security concerns on gait biometrics and discuss outstanding challenges and potential directions for future research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源