论文标题
字典函数的异质混合物近似Koopman操作员的子空间不变性
Heterogeneous mixtures of dictionary functions to approximate subspace invariance in Koopman operators
论文作者
论文摘要
Koopman运算符将非线性动力学模型作为作用于非线性函数作为状态的线性动态系统。这种非标准状态通常称为可观察到的koopman,通常通过从\ textit {dictionary}绘制的函数叠加来近似数值。广泛使用的算法是\ textIt {扩展动态模式分解},其中字典函数是从固定的均质函数类别中绘制的。最近,深度学习与EDMD相结合已被用来通过称为“深度动态模式分解(DEEPDMD”)的算法学习新的字典函数。学到的表示(1)都可以准确地模型,并且(2)与原始非线性系统的尺寸相当良好。在本文中,我们从deepDMD分析了学到的词典,并探讨了其强劲性能的理论基础。我们发现了一类新型的字典函数,以近似Koopman可观测值。这些字典函数的错误分析表明它们满足子空间近似的属性,我们将其定义为统一有限近似闭合。我们发现,从不同类别的非线性函数绘制的异质词典函数的结构化混合实现了与DEEPDMD相同的精度和尺寸缩放。该混合词典以降低参数的数量级来进行,同时保持几何性解释性。我们的结果提供了一个假设,可以解释深度神经网络在学习数值近似值的成功量。
Koopman operators model nonlinear dynamics as a linear dynamic system acting on a nonlinear function as the state. This nonstandard state is often called a Koopman observable and is usually approximated numerically by a superposition of functions drawn from a \textit{dictionary}. A widely used algorithm, is \textit{Extended Dynamic Mode Decomposition}, where the dictionary functions are drawn from a fixed, homogeneous class of functions. Recently, deep learning combined with EDMD has been used to learn novel dictionary functions in an algorithm called deep dynamic mode decomposition (deepDMD). The learned representation both (1) accurately models and (2) scales well with the dimension of the original nonlinear system. In this paper we analyze the learned dictionaries from deepDMD and explore the theoretical basis for their strong performance. We discover a novel class of dictionary functions to approximate Koopman observables. Error analysis of these dictionary functions show they satisfy a property of subspace approximation, which we define as uniform finite approximate closure. We discover that structured mixing of heterogeneous dictionary functions drawn from different classes of nonlinear functions achieve the same accuracy and dimensional scaling as deepDMD. This mixed dictionary does so with an order of magnitude reduction in parameters, while maintaining geometric interpretability. Our results provide a hypothesis to explain the success of deep neural networks in learning numerical approximations to Koopman operators.