论文标题
瑜伽姿势的视图独立分类框架
A View Independent Classification Framework for Yoga Postures
论文作者
论文摘要
瑜伽是全球广受好评的,并且广泛推荐健康生活的练习。在执行瑜伽时保持正确的姿势至关重要。在这项工作中,我们采用了从人类姿势估计模型中进行转移学习,以提取整个人体的136个关键点,以训练一个随机的森林分类器,该分类器用于估算瑜伽室。在收集的内部收集的广泛的瑜伽视频数据库中评估了结果,该数据库是从4个不同的相机角度记录的51个主题。我们提出了一个三步方案,用于通过对1)看不见的帧,2)看不见的受试者和3)看不见的相机角度来评估瑜伽分类器的普遍性。我们认为,对于大多数应用程序,对看不见的主题的验证精度和看不见的相机角度是最重要的。我们经验分析了三个公共数据集,转移学习的优势以及目标泄漏的可能性。我们进一步证明,分类精度在很大程度上取决于所采用的交叉验证方法,并且通常会产生误导。为了促进进一步的研究,我们已经公开提供了关键点数据集和代码。
Yoga is a globally acclaimed and widely recommended practice for a healthy living. Maintaining correct posture while performing a Yogasana is of utmost importance. In this work, we employ transfer learning from Human Pose Estimation models for extracting 136 key-points spread all over the body to train a Random Forest classifier which is used for estimation of the Yogasanas. The results are evaluated on an in-house collected extensive yoga video database of 51 subjects recorded from 4 different camera angles. We propose a 3 step scheme for evaluating the generalizability of a Yoga classifier by testing it on 1) unseen frames, 2) unseen subjects, and 3) unseen camera angles. We argue that for most of the applications, validation accuracies on unseen subjects and unseen camera angles would be most important. We empirically analyze over three public datasets, the advantage of transfer learning and the possibilities of target leakage. We further demonstrate that the classification accuracies critically depend on the cross validation method employed and can often be misleading. To promote further research, we have made key-points dataset and code publicly available.