论文标题
非本地的保姆重力及其确切的宇宙解决方案
Nonlocal de Sitter gravity and its exact cosmological solutions
论文作者
论文摘要
本文致力于简单的非局部DE Sitter重力模型及其确切的真空宇宙学解决方案。在Einstein-Hilbert采取$λ$项的行动中,我们以以下方式介绍非局部性:$ r-r-2λ= \ sqrt {r-2λ} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ sqrt {r-2λ} \ to \ sqrt {r-2λ}} 1 + \ sum_ {n = 1}^{ + \ infty} \ big(f_n \ box^n + f _ { - n} \ box^{ - n} \ big)$是d'Alembert-beltrami操作员$ \ box $ \ box $及其inverse $ \ box^box^} $的分析功能。通过这种方式,$ r $和$λ$以与本地的非本地版本相同的形式输入,而非本地运算符$ f(\ box)$是无尺寸的。提出了重力场$ g_ {μν} $的相应运动方程。找到一些确切的宇宙学解决方案的第一步是求解方程$ \ box \ sqrt {r-2λ} = q \ sqrt {r-2λ},$ whene $ q =ζλ / quad(ζλ\ quad(ζ\ in \ mathbb {r}) $ \ box。$我们介绍并讨论了几种均质和各向同性宇宙的宇宙学解决方案。这些解决方案之一模仿了通常分配给暗物质和暗能量的效果。其他一些解决方案是平坦,封闭和开放式宇宙中非弹跳的示例。也有单数和循环解决方案。所有这些宇宙学解决方案都是非局部性的结果,在当地的Sitter案中不存在。
This paper is devoted to a simple nonlocal de Sitter gravity model and its exact vacuum cosmological solutions. In the Einstein-Hilbert action with $Λ$ term, we introduce nonlocality by the following way: $R - 2 Λ= \sqrt{R-2Λ}\ \sqrt{R-2Λ} \to \sqrt{R-2Λ}\ F(\Box)\ \sqrt{R-2Λ} ,$ where ${F} (\Box) = 1 + \sum_{n= 1}^{+\infty} \big( f_n \Box^n + f_{-n} \Box^{-n} \big) $ is an analytic function of the d'Alembert-Beltrami operator $\Box$ and its inverse $\Box^{-1}$. By this way, $R$ and $Λ$ enter with the same form into nonlocal version as they are in the local one, and nonlocal operator $F(\Box)$ is dimensionless. The corresponding equations of motion for gravitational field $g_{μν}$ are presented. The first step in finding some exact cosmological solutions is solving the equation $\Box \sqrt{R-2Λ} = q \sqrt{R-2Λ} , $ where $ q =ζΛ\quad (ζ\in \mathbb{R})$ is an eigenvalue and $\sqrt{R-2Λ}$ is an eigenfunction of the operator $\Box .$ We presented and discussed several exact cosmological solutions for homogeneous and isotropic universe. One of these solutions mimics effects that are usually assigned to dark matter and dark energy. Some other solutions are examples of the nonsingular bounce ones in flat, closed and open universe. There are also singular and cyclic solutions. All these cosmological solutions are a result of nonlocality and do not exist in the local de Sitter case.