论文标题

数据增强技术在时间序列域中:调查和分类学

Data Augmentation techniques in time series domain: A survey and taxonomy

论文作者

Iglesias, Guillermo, Talavera, Edgar, González-Prieto, Ángel, Mozo, Alberto, Gómez-Canaval, Sandra

论文摘要

随着基于深度学习的生成模型的最新进展,它在时间序列领域的出色表现并没有花费很长时间。深度神经网络用于与时间序列一起工作,这在很大程度上取决于培训中使用的数据集的大小和一致性。这些特征通常在现实世界中不丰富,在现实世界中,它们通常受到限制,并且通常具有必须保证的约束。因此,增加数据量的有效方法是通过使用数据增强技术,通过添加噪声或排列并生成新的合成数据。这项工作系统地回顾了该领域的当前最新技术,以概述所有可用的算法,并提出了最相关研究的分类法。将评估不同变体的效率,以及评估性能的不同指标以及与每个模型有关的主要问题的不同指标。这项研究的最终目的是摘要,概述产生更好结果的领域的发展和性能,以指导该领域的未来研究人员。

With the latest advances in Deep Learning-based generative models, it has not taken long to take advantage of their remarkable performance in the area of time series. Deep neural networks used to work with time series heavily depend on the size and consistency of the datasets used in training. These features are not usually abundant in the real world, where they are usually limited and often have constraints that must be guaranteed. Therefore, an effective way to increase the amount of data is by using Data Augmentation techniques, either by adding noise or permutations and by generating new synthetic data. This work systematically reviews the current state-of-the-art in the area to provide an overview of all available algorithms and proposes a taxonomy of the most relevant research. The efficiency of the different variants will be evaluated as a central part of the process, as well as the different metrics to evaluate the performance and the main problems concerning each model will be analysed. The ultimate aim of this study is to provide a summary of the evolution and performance of areas that produce better results to guide future researchers in this field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源