论文标题
钢笔和纸练习在机器学习中
Pen and Paper Exercises in Machine Learning
论文作者
论文摘要
这是机器学习中(主要是)笔和纸练习的集合。这些练习在以下主题上:线性代数,优化,有向图形模型,无向图形模型,图形模型的表达能力,因子图和消息传递,隐藏马尔可夫模型的推断,基于模型的学习(包括ICA和非正态模型),采样和Monte-Carlo集成和各种推力。
This is a collection of (mostly) pen-and-paper exercises in machine learning. The exercises are on the following topics: linear algebra, optimisation, directed graphical models, undirected graphical models, expressive power of graphical models, factor graphs and message passing, inference for hidden Markov models, model-based learning (including ICA and unnormalised models), sampling and Monte-Carlo integration, and variational inference.