论文标题
遥感图像分类使用转移学习和基于注意力的深神经网络
Remote Sensing Image Classification using Transfer Learning and Attention Based Deep Neural Network
论文作者
论文摘要
遥感图像场景分类(RSISC)的任务旨在根据其内容将遥感图像分类为语义类别的组,它在各种应用程序中扮演着重要的作用,例如城市规划,自然风险检测,环境监测,植被映射或地理位置对象检测。在过去的几年中,专注于RSISC任务的研究社区已显示出巨大的努力来发布各种数据集,并提出了不同的方法来应对RSISC挑战。最近,几乎拟议的RSISC系统基于深度学习模型,这些模型证明了使用图像处理和机器学习的强大而胜过传统方法。在本文中,我们还利用深度学习技术的力量,评估各种深神经网络体系结构,表明影响RSISC系统性能的主要因素。鉴于全面的分析,我们为RSISC提出了一个基于深度学习的框架,该框架利用了转移学习技术和多头注意方案。提出的深度学习框架在基准NWPU-Resisc45数据集上进行了评估,并达到了94.7%的最佳分类精度,这表现出与最先进的系统竞争性和现实生活应用潜力的竞争力。
The task of remote sensing image scene classification (RSISC), which aims at classifying remote sensing images into groups of semantic categories based on their contents, has taken the important role in a wide range of applications such as urban planning, natural hazards detection, environment monitoring,vegetation mapping, or geospatial object detection. During the past years, research community focusing on RSISC task has shown significant effort to publish diverse datasets as well as propose different approaches to deal with the RSISC challenges. Recently, almost proposed RSISC systems base on deep learning models which prove powerful and outperform traditional approaches using image processing and machine learning. In this paper, we also leverage the power of deep learning technology, evaluate a variety of deep neural network architectures, indicate main factors affecting the performance of a RSISC system. Given the comprehensive analysis, we propose a deep learning based framework for RSISC, which makes use of the transfer learning technique and multihead attention scheme. The proposed deep learning framework is evaluated on the benchmark NWPU-RESISC45 dataset and achieves the best classification accuracy of 94.7% which shows competitive to the state-of-the-art systems and potential for real-life applications.