论文标题
务实的分布在简单整数求程模型上优化了强大的优化
Pragmatic distributionally robust optimization for simple integer recourse models
论文作者
论文摘要
受其连续同行的成功的启发,处理分配不确定性下的混合企业求助模型(MIR)模型的标准方法是使用分布强劲的优化(DRO)。但是,我们认为,这种建模选择并不总是合理的,因为当涉及整数决策变量时,DRO技术通常在计算上极具挑战性。这就是为什么我们为在分布不确定性下的MIR模型提出了一种根本不同的方法,该方法旨在获得具有改善的计算障碍的模型。对于简单整数求程(SIR)模型的特殊情况,我们表明可以通过务实选择不确定性集获得可拖动的模型。在这里,我们考虑基于Wasserstein距离以及广义力矩条件的不确定性集。我们将我们的方法与标准DRO进行了比较,并将我们思想的潜在概括与更通用的mir模型进行了比较。我们分析的一个重要侧重结果是SIR模型凸近近似的性能保证的推导。与文献相反,这些误差范围不仅有效对于连续分布有效,而且对任何分布都有有效。
Inspired by its success for their continuous counterparts, the standard approach to deal with mixed-integer recourse (MIR) models under distributional uncertainty is to use distributionally robust optimization (DRO). We argue, however, that this modeling choice is not always justified, since DRO techniques are generally computationally extremely challenging when integer decision variables are involved. That is why we propose a fundamentally different approach for MIR models under distributional uncertainty aimed at obtaining models with improved computational tractability. For the special case of simple integer recourse (SIR) models, we show that tractable models can be obtained by pragmatically selecting the uncertainty set. Here, we consider uncertainty sets based on the Wasserstein distance and also on generalized moment conditions. We compare our approach with standard DRO and discuss potential generalizations of our ideas to more general MIR models. An important side-result of our analysis is the derivation of performance guarantees for convex approximations of SIR models. In contrast with the literature, these error bounds are not only valid for continuous distribution, but hold for any distribution.