论文标题

在正常的seshadri分层上

On normal Seshadri stratifications

论文作者

Chirivì, Rocco, Fang, Xin, Littelmann, Peter

论文摘要

在嵌入式投影品种上存在seshadri分层的存在,可以使多种变性变成射弹性旋转品种的融合,称为半呈半型品种。当半旋律品种的每个不可还原成分都是正常的紫红色品种时,这种分层是正常的。在这种情况下,我们表明,可以提起半态品种定义理想的gröbner基础,以定义嵌入式的投射品种。讨论了对Koszul和Gorenstein特性的应用。

The existence of a Seshadri stratification on an embedded projective variety provides a flat degeneration of the variety to a union of projective toric varieties, called a semi-toric variety. Such a stratification is said to be normal when each irreducible component of the semi-toric variety is a normal toric variety. In this case, we show that a Gröbner basis of the defining ideal of the semi-toric variety can be lifted to define the embedded projective variety. Applications to Koszul and Gorenstein properties are discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源