论文标题

物理知识神经网络的混合配方,作为在异质域中工程问题的潜在求解器:与有限元方法进行比较

A mixed formulation for physics-informed neural networks as a potential solver for engineering problems in heterogeneous domains: comparison with finite element method

论文作者

Rezaei, Shahed, Harandi, Ali, Moeineddin, Ahmad, Xu, Bai-Xiang, Reese, Stefanie

论文摘要

物理信息神经网络(PINN)能够找到给定边界值问题的解决方案。我们采用了有限元方法(FEM)的几个想法来增强现有PINN在工程问题中的性能。当前工作的主要贡献是促进使用主要变量的空间梯度作为分离神经网络的输出。后来,具有较高衍生物的强形式被应用于主要变量的空间梯度作为物理约束。此外,该问题的所谓能量形式被应用于主要变量,作为训练的附加限制。所提出的方法仅需要一阶导数才能构建物理损失函数。我们讨论了为什么通过不同模型之间的各种比较,这一点是有益的。基于配方混合的PINN和FE方法具有一些相似之处。尽管前者利用神经网络的复杂非线性插值在给定的搭配点最小化PDE及其能量形式,但后者在元素节点借助形状函数在元素节点上进行了相同的操作。我们专注于异质固体,以显示深学习在不同边界条件下在复杂环境中预测解决方案的能力。针对FEM的解决方案检查了提出的PINN模型的性能:弹性和泊松方程(稳态扩散问题)。我们得出的结论是,通过正确设计PINN中的网络体系结构,深度学习模型有可能在没有其他来源的任何可用初始数据中解决异质域中的未知数。最后,关于Pinn和FEM的组合提供了讨论,以在未来的开发中快速准确设计复合材料。

Physics-informed neural networks (PINNs) are capable of finding the solution for a given boundary value problem. We employ several ideas from the finite element method (FEM) to enhance the performance of existing PINNs in engineering problems. The main contribution of the current work is to promote using the spatial gradient of the primary variable as an output from separated neural networks. Later on, the strong form which has a higher order of derivatives is applied to the spatial gradients of the primary variable as the physical constraint. In addition, the so-called energy form of the problem is applied to the primary variable as an additional constraint for training. The proposed approach only required up to first-order derivatives to construct the physical loss functions. We discuss why this point is beneficial through various comparisons between different models. The mixed formulation-based PINNs and FE methods share some similarities. While the former minimizes the PDE and its energy form at given collocation points utilizing a complex nonlinear interpolation through a neural network, the latter does the same at element nodes with the help of shape functions. We focus on heterogeneous solids to show the capability of deep learning for predicting the solution in a complex environment under different boundary conditions. The performance of the proposed PINN model is checked against the solution from FEM on two prototype problems: elasticity and the Poisson equation (steady-state diffusion problem). We concluded that by properly designing the network architecture in PINN, the deep learning model has the potential to solve the unknowns in a heterogeneous domain without any available initial data from other sources. Finally, discussions are provided on the combination of PINN and FEM for a fast and accurate design of composite materials in future developments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源