论文标题
在堆叠式范德华(Van der Waals)中的栅极可调异常霍尔效应 - 铁磁绝缘子 - 拓扑绝缘子异质结构
Gate-tunable anomalous Hall effect in stacked van der Waals ferromagnetic insulator - topological insulator heterostructures
论文作者
论文摘要
对新型拓扑阶段的搜索,例如量子异常的霍尔绝缘子(QAHI)或轴突绝缘子,已激励不同方案将磁性引入拓扑绝缘体。一种方案是在拓扑绝缘子中引入铁磁掺杂剂。但是,这通常是具有挑战性的,需要精心设计的生长/异质结构或相对较低的温度才能观察QAHI,因为诸如添加的铁磁掺杂剂等问题。另一个有前途的方案是将磁接近效应与磁绝缘子使用磁性绝缘体磁化。到目前为止,这些异质结构中的大多数都是由生长技术(例如分子束外延和金属有机化学蒸气沉积)合成的。由于生长条件和晶格不匹配的差异,这些不容易适用于允许混合和匹配许多可用的铁磁和拓扑绝缘子。在这里,我们证明,通过脱落的异质结构,通过脱落的千分尺大小的薄片的干片范德华拓扑绝缘子和磁绝缘体材料(Bisbtese2/cr2GE2TE6)组装的堆叠异质结构可以获得磁接近效应,这在观察态度(ANOMALOSOUS HALLEF FALMATE)中证明了。此外,通过这些异质结构制成的设备可以在通过静电门控控制载体密度时调制AHE。这些结果表明,磁性范德华材料的简单机械转移提供了另一个可能通过磁性接近效应磁化拓扑绝缘子的途径,这是进一步实现新拓扑阶段(例如Qahi和Axion绝缘子)的关键步骤。
The search of novel topological phases, such as the quantum anomalous Hall insulator (QAHI) or the axion insulator, has motivated different schemes to introduce magnetism into topological insulators. One scheme is to introduce ferromagnetic dopants in topological insulators. However, it is generally challenging and requires carefully engineered growth/heterostructures or relatively low temperatures to observe the QAHI due to issues such as the added disorder with ferromagnetic dopants. Another promising scheme is using the magnetic proximity effect with a magnetic insulator to magnetize the topological insulator. Most of these heterostructures are synthesized so far by growth techniques such as molecular beam epitaxy and metallic organic chemical vapor deposition. These are not readily applicable to allow mixing and matching many of the available ferromagnetic and topological insulators due to difference in growth conditions and lattice mismatch. Here, we demonstrate that the magnetic proximity effect can still be obtained in stacked heterostructures assembled via the dry transfer of exfoliated micrometer-sized thin flakes of van der Waals topological insulator and magnetic insulator materials (BiSbTeSe2/Cr2Ge2Te6), as evidenced in the observation of an anomalous Hall effect (AHE). Furthermore, devices made from these heterostructures can allow modulation of the AHE when controlling the carrier density via electrostatic gating. These results show that simple mechanical transfer of magnetic van der Waals materials provides another possible avenue to magnetize topological insulators by magnetic proximity effect, a key step towards further realization of novel topological phases such as QAHI and axion insulators.