论文标题
迈向KAB2:学习关键知识从单目标问题到多目标问题
Towards KAB2S: Learning Key Knowledge from Single-Objective Problems to Multi-Objective Problem
论文作者
论文摘要
作为“进化计算研究的新领域”,进化转移优化(ETO)将克服传统的零重复利用相关经验和知识的范式,这些范式在进化计算研究中解决了过去的问题。在通过ETO的计划申请中,可以为智能调度和绿色日程安排形成一个非常吸引人且竞争激烈的框架“会议”,特别是对于来自中国的“碳中立性”的国际承诺。据我们所知,当多目标优化问题“满足”离散案例中的单目标优化问题(而不是多任务优化)时,我们的论文是在此处安排的论文作为一类ETO框架的第一项工作。更具体地说,可以通过新的核心转移机制和学习技术来使用用于置换流程调度问题(PFSP)的新核心转移机制和学习技术,可以使用用于工业应用传达的关键知识,例如具有遗传算法的位置构建块。关于良好的基准测试的广泛研究验证了我们提出的ETO-PFSP框架的企业有效性和巨大的普遍性。我们的调查(1)丰富了ETO框架,(2)为遗传算法和模因算法的基本基础的经典和基本理论做出了贡献,(3)(3)朝着通过“知识和建筑基于范围的范式”的范式进行学习的进化调整范式通过学习的范式进行范式,以实现“(Kab2s”(Kab2s)。
As "a new frontier in evolutionary computation research", evolutionary transfer optimization(ETO) will overcome the traditional paradigm of zero reuse of related experience and knowledge from solved past problems in researches of evolutionary computation. In scheduling applications via ETO, a quite appealing and highly competitive framework "meeting" between them could be formed for both intelligent scheduling and green scheduling, especially for international pledge of "carbon neutrality" from China. To the best of our knowledge, our paper on scheduling here, serves as the 1st work of a class of ETO frameworks when multiobjective optimization problem "meets" single-objective optimization problems in discrete case (not multitasking optimization). More specifically, key knowledge conveyed for industrial applications, like positional building blocks with genetic algorithm based settings, could be used via the new core transfer mechanism and learning techniques for permutation flow shop scheduling problem(PFSP). Extensive studies on well-studied benchmarks validate firm effectiveness and great universality of our proposed ETO-PFSP framework empirically. Our investigations (1) enrich the ETO frameworks, (2) contribute to the classical and fundamental theory of building block for genetic algorithms and memetic algorithms, and (3) head towards the paradigm shift of evolutionary scheduling via learning by proposal and practice of paradigm of "knowledge and building-block based scheduling" (KAB2S) for "industrial intelligence" in China.