论文标题
噪声吸引物理信息的机器学习可用于强大的PDE发现
Noise-aware Physics-informed Machine Learning for Robust PDE Discovery
论文作者
论文摘要
这项工作与发现物理系统的偏微分方程(PDE)有关。现有方法证明了有限观测值的PDE识别,但未能保持令人满意的结果,部分原因是由于次优估计的衍生物并发现了PDE系数。我们通过引入噪音吸引物理学的机器学习(NPIML)框架来解决这些问题,以在任意分布后从数据中发现管理PDE。我们建议在多任务学习范式中培训几个神经网络,即求解器和预选者,从而产生构成隐藏物理约束的基础候选者的重要分数。在经过联合培训之后,求解器网络估计了稀疏回归算法的潜在候选者,例如部分衍生物,以最初公布最有可能的帕斯蒂尔PDE,根据信息标准决定。我们还提出了基于离散的傅立叶变换(DFT)的Denoising物理信息信息网络(DPINNS),以提供一组符合降噪变量的最佳芬特PDE系数。 Denoising Pinn构成到前沿投影网络和PINN,以前学到的求解器初始化。我们对五个规范PDE的广泛实验确认,该拟议的框架为PDE发现提供了一种强大而可解释的方法,适用于广泛的系统,可能会因噪声而复杂。
This work is concerned with discovering the governing partial differential equation (PDE) of a physical system. Existing methods have demonstrated the PDE identification from finite observations but failed to maintain satisfying results against noisy data, partly owing to suboptimal estimated derivatives and found PDE coefficients. We address the issues by introducing a noise-aware physics-informed machine learning (nPIML) framework to discover the governing PDE from data following arbitrary distributions. We propose training a couple of neural networks, namely solver and preselector, in a multi-task learning paradigm, which yields important scores of basis candidates that constitute the hidden physical constraint. After they are jointly trained, the solver network estimates potential candidates, e.g., partial derivatives, for the sparse regression algorithm to initially unveil the most likely parsimonious PDE, decided according to the information criterion. We also propose the denoising physics-informed neural networks (dPINNs), based on Discrete Fourier Transform (DFT), to deliver a set of the optimal finetuned PDE coefficients respecting the noise-reduced variables. The denoising PINNs are structured into forefront projection networks and a PINN, by which the formerly learned solver initializes. Our extensive experiments on five canonical PDEs affirm that the proposed framework presents a robust and interpretable approach for PDE discovery, applicable to a wide range of systems, possibly complicated by noise.