论文标题
Power-Maxwell电动力学中的Kiselev解决方案
The Kiselev solution in power-Maxwell electrodynamics
论文作者
论文摘要
在这项工作中,我们重新考虑了描述被“典型”样流体包围的黑洞的解决方案。 Kiselev于2003年引入了这种几何形状,其物理源最初是通过各向异性流体建模的。我们表明,Kiselev几何形状实际上是与非线性电动力学结合的爱因斯坦方程的精确解。更具体地说,我们表明,使用电动ANSATZ或磁性磁力元素,Kiselev几何形状成为Power-Maxwell电动力学的背景下的精确解决方案。在这两种情况下,物理源都可以通过Power-Maxwell Lagrangian建模,尽管具有与电荷或磁性电荷相对应的不同功率。我们简要研究了该几何形状中带电颗粒的运动。最后,在这种情况下,我们对黑洞热力学做出了正确的解释。与Schwarzschild-De保姆相似,我们注意到热容量中的Schottky峰的存在,表明了这种热力学黑洞系统的可能性,可以用作连续的热机。
In this work we reconsider the solution describing black holes surrounded by a `quintessence'-like fluid. This geometry was introduced by Kiselev in 2003 and its physical source was originally modeled by an anisotropic fluid. We show that the Kiselev geometry is actually an exact solution of the Einstein equations coupled to nonlinear electrodynamics. More specifically, we show that the Kiselev geometry becomes an exact solution in the context of power-Maxwell electrodynamics, using either an electric ansatz or a magnetic one. In both cases the physical source can be modeled by a power-Maxwell Lagrangian, albeit with different powers corresponding to the electric or the magnetic charges. We briefly investigate the motion of charged particles in this geometry. Finally, we give the proper interpretation of the black-hole thermodynamics in this context. Similarly to the Schwarzschild-de Sitter case, we note the presence of the Schottky peaks in the heat capacity, signaling out the possibility of this thermodynamic black hole system to function as a continuous heat machine.