论文标题

偏光阶段检索:唯一性和算法

Polarimetric phase retrieval: uniqueness and algorithms

论文作者

Flamant, Julien, Usevich, Konstantin, Clausel, Marianne, Brie, David

论文摘要

这项工作引入了一种新型的傅立叶相检索模型,称为偏光相检索,该模型可以系统地使用傅立叶相检索问题。我们通过用特殊的多项式分解问题揭示了该新模型的唯一性能的完整表征。我们介绍了重建方法的两种不同但互补的类别。第一个是代数,并且依赖于使用Sylvester矩阵的近似常见分裂计算。第二个仔细调整了现有算法以解决傅立叶期检索,即半决赛正放松和线条流,以解决极化相的检索问题。最后,一组数值实验允许对每种提出的重建策略的数值行为和相对性能进行详细评估。我们进一步强调了一种重建策略,该策略结合了两种方法,以实现可扩展,计算有效和渐近MSE的最佳性能。

This work introduces a novel Fourier phase retrieval model, called polarimetric phase retrieval that enables a systematic use of polarization information in Fourier phase retrieval problems. We provide a complete characterization of uniqueness properties of this new model by unraveling equivalencies with a peculiar polynomial factorization problem. We introduce two different but complementary categories of reconstruction methods. The first one is algebraic and relies on the use of approximate greatest common divisor computations using Sylvester matrices. The second one carefully adapts existing algorithms for Fourier phase retrieval, namely semidefinite positive relaxation and Wirtinger-Flow, to solve the polarimetric phase retrieval problem. Finally, a set of numerical experiments permits a detailed assessment of the numerical behavior and relative performances of each proposed reconstruction strategy. We further highlight a reconstruction strategy that combines both approaches for scalable, computationally efficient and asymptotically MSE optimal performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源