论文标题

在比较基于注意的基于注意的终点与最终语音识别的编码器中

On Comparison of Encoders for Attention based End to End Speech Recognition in Standalone and Rescoring Mode

论文作者

Joshi, Raviraj, Kumar, Subodh

论文摘要

流媒体自动语音识别(ASR)模型更受欢迎,适合基于语音的应用程序。但是,非流传输模型在查看整个音频上下文时提供了更好的性能。为了利用语音搜索等流媒体应用程序中非流游模型的好处,它通常在第二通过重新评分模式下使用。使用蒸汽模型生成的候选假设是使用非流式模型重新评分的。在这项工作中,我们在独立和重新评分模式的Flipkart语音搜索任务上评估了基于注意力的端到端ASR模型。这些模型基于收听拼写(LAS)编码器架构架构。我们基于LSTM,变压器和构象异构体进行不同的编码器变化。我们比较这些模型的延迟要求及其性能。总体而言,我们表明,变压器模型提供了可接受的延迟要求。我们报告的相对改善约为16%,第二次通过LAS重新评分,延迟开销低于5ms。我们还强调了CNN前端使用变压器体系结构的重要性,以达到可比的单词错误率(WER)。此外,我们观察到,在第二次通过重新评分模式下,所有编码器都提供了相似的好处,而在独立文本生成模式下,性能差异显着。

The streaming automatic speech recognition (ASR) models are more popular and suitable for voice-based applications. However, non-streaming models provide better performance as they look at the entire audio context. To leverage the benefits of the non-streaming model in streaming applications like voice search, it is commonly used in second pass re-scoring mode. The candidate hypothesis generated using steaming models is re-scored using a non-streaming model. In this work, we evaluate the non-streaming attention-based end-to-end ASR models on the Flipkart voice search task in both standalone and re-scoring modes. These models are based on Listen-Attend-Spell (LAS) encoder-decoder architecture. We experiment with different encoder variations based on LSTM, Transformer, and Conformer. We compare the latency requirements of these models along with their performance. Overall we show that the Transformer model offers acceptable WER with the lowest latency requirements. We report a relative WER improvement of around 16% with the second pass LAS re-scoring with latency overhead under 5ms. We also highlight the importance of CNN front-end with Transformer architecture to achieve comparable word error rates (WER). Moreover, we observe that in the second pass re-scoring mode all the encoders provide similar benefits whereas the difference in performance is prominent in standalone text generation mode.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源