论文标题
潮汐破坏事件AT2021EHB:相对论磁盘反射的证据,以及磁盘 - 核心系统的快速演变
The Tidal Disruption Event AT2021ehb: Evidence of Relativistic Disk Reflection, and Rapid Evolution of the Disk-Corona System
论文作者
论文摘要
我们提出X射线,紫外线,光学和无线电观察结果($ \ \ \ \ of78 $ mpc)潮汐破坏事件(TDE)AT2021EHB/ZTF21AANXHJV在其前430天的进化过程中。 AT2021EHB发生在托管$ \ od 10^{7} \,m_ \ odot $ Black Hole($ M _ {\ rm BH} $从主机星系缩放关系中推论)的$ \ 10^{7} \,m_ \ odot $ Black Hole($ \ odot $ black Hole($ \ odot $)。高效率迅速,更好的监视显示X射线亮度延迟。频谱首先经历渐进的$ {\ rm soft} \ rightarrow {\ rm hard} $跃迁,然后在3天内突然在$Δt\ 272 $天内再次变软,x射线磁带下降了10倍。在关节++nustar观察($ΔT= 264美元,更坚硬的状态)中,我们观察到一个突出的非热成分,最高30 keV,并且在铁K频段中有极宽的发射线。当X射线频谱是最困难时,AT2021EHB的骨化光度最高达到$ 6.0^{+10.4} _ { - 3.8} \%l _ {\ rm EDD} $。在戏剧性的X射线演化过程中,未检测到无线电发射,紫外线/光学发光度保持相对恒定,并且光谱是毫无特色的。我们提出以下解释:(i)$ {\ rm soft} \ rightarrow {\ rm hard} $ transition可能是由于磁性支配的电晕的逐渐形成而引起的; (ii)硬X射线光子沿着固体角度从系统中逸出,具有低散射的光学深度($ \ sim \,$少数),而紫外/光学发射可能是通过重新处理柱密度较大的重新处理材料而产生的 - 系统是高度的,高度的。 (iii)突然的X射线通量下降可能是由于内部积聚流中的热粘膜不稳定性触发的,导致磁盘较薄得多。
We present X-ray, UV, optical, and radio observations of the nearby ($\approx78$ Mpc) tidal disruption event (TDE) AT2021ehb/ZTF21aanxhjv during its first 430 days of evolution. AT2021ehb occurs in the nucleus of a galaxy hosting a $\approx 10^{7}\,M_\odot$ black hole ($M_{\rm BH}$ inferred from host galaxy scaling relations). High-cadence Swift and NICER monitoring reveals a delayed X-ray brightening. The spectrum first undergoes a gradual ${\rm soft }\rightarrow{\rm hard}$ transition and then suddenly turns soft again within 3 days at $δt\approx 272$ days during which the X-ray flux drops by a factor of ten. In the joint NICER+NuSTAR observation ($δt =264$ days, harder state), we observe a prominent non-thermal component up to 30 keV and an extremely broad emission line in the iron K band. The bolometric luminosity of AT2021ehb reaches a maximum of $6.0^{+10.4}_{-3.8}\% L_{\rm Edd}$ when the X-ray spectrum is the hardest. During the dramatic X-ray evolution, no radio emission is detected, the UV/optical luminosity stays relatively constant, and the optical spectra are featureless. We propose the following interpretations: (i) the ${\rm soft }\rightarrow{\rm hard}$ transition may be caused by the gradual formation of a magnetically dominated corona; (ii) hard X-ray photons escape from the system along solid angles with low scattering optical depth ($\sim\,$a few) whereas the UV/optical emission is likely generated by reprocessing materials with much larger column density -- the system is highly aspherical; (iii) the abrupt X-ray flux drop may be triggered by the thermal-viscous instability in the inner accretion flow leading to a much thinner disk.