论文标题
SKTR:从随机已知的日志中恢复的跟踪恢复
SKTR: Trace Recovery from Stochastically Known Logs
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Developments in machine learning together with the increasing usage of sensor data challenge the reliance on deterministic logs, requiring new process mining solutions for uncertain, and in particular stochastically known, logs. In this work we formulate {trace recovery}, the task of generating a deterministic log from stochastically known logs that is as faithful to reality as possible. An effective trace recovery algorithm would be a powerful aid for maintaining credible process mining tools for uncertain settings. We propose an algorithmic framework for this task that recovers the best alignment between a stochastically known log and a process model, with three innovative features. Our algorithm, SKTR, 1) handles both Markovian and non-Markovian processes; 2) offers a quality-based balance between a process model and a log, depending on the available process information, sensor quality, and machine learning predictiveness power; and 3) offers a novel use of a synchronous product multigraph to create the log. An empirical analysis using five publicly available datasets, three of which use predictive models over standard video capturing benchmarks, shows an average relative accuracy improvement of more than 10 over a common baseline.