论文标题

注意自动编码器用于自动化进展预测主观认知下降的结构MRI

Attention-Guided Autoencoder for Automated Progression Prediction of Subjective Cognitive Decline with Structural MRI

论文作者

Guan, Hao, Yue, Ling, Yap, Pew-Thian, Xiao, Shifu, Bozoki, Andrea, Liu, Mingxia

论文摘要

主观认知下降(SCD)是阿尔茨海默氏病(AD)的临床前阶段,甚至在轻度认知障碍(MCI)之前就发生。渐进式SCD将转换为MCI,并有可能进一步发展为AD。因此,通过神经成像技术(例如,结构MRI)对进行性SCD的早期鉴定对于AD的早期干预具有巨大的临床价值。但是,现有的基于MRI的机器/深度学习方法通​​常会遇到小样本大小的问题,这对相关的神经影像学分析构成了巨大挑战。我们旨在解决本文的主要问题是如何利用相关领域(例如AD/NC)来协助SCD的进展预测。同时,我们担心哪些大脑区域与进行性SCD的识别更加紧密联系。为此,我们提出了一个注意引导的自动编码器模型,以进行有效的跨域适应性,以促进知识转移从AD到SCD。提出的模型由四个关键组成部分组成:1)用于学习不同域的共享子空间表示的特征编码模块,2)一个注意模块,用于自动定义了大脑试图中定义的兴趣的区分大脑区域,3)用于重建原始输入的解码模块,用于重建原始输入,4)识别大脑疾病的分类模块。通过对这四个模块的联合培训,可以学习域不变功能。同时,注意机制可以强调与脑疾病相关的区域。公开可用的ADNI数据集和私人CLAS数据集的广泛实验证明了该方法的有效性。提出的模型直接可以在CPU上仅使用5-10秒训练和测试,并且适用于具有小数据集的医疗任务。

Subjective cognitive decline (SCD) is a preclinical stage of Alzheimer's disease (AD) which occurs even before mild cognitive impairment (MCI). Progressive SCD will convert to MCI with the potential of further evolving to AD. Therefore, early identification of progressive SCD with neuroimaging techniques (e.g., structural MRI) is of great clinical value for early intervention of AD. However, existing MRI-based machine/deep learning methods usually suffer the small-sample-size problem which poses a great challenge to related neuroimaging analysis. The central question we aim to tackle in this paper is how to leverage related domains (e.g., AD/NC) to assist the progression prediction of SCD. Meanwhile, we are concerned about which brain areas are more closely linked to the identification of progressive SCD. To this end, we propose an attention-guided autoencoder model for efficient cross-domain adaptation which facilitates the knowledge transfer from AD to SCD. The proposed model is composed of four key components: 1) a feature encoding module for learning shared subspace representations of different domains, 2) an attention module for automatically locating discriminative brain regions of interest defined in brain atlases, 3) a decoding module for reconstructing the original input, 4) a classification module for identification of brain diseases. Through joint training of these four modules, domain invariant features can be learned. Meanwhile, the brain disease related regions can be highlighted by the attention mechanism. Extensive experiments on the publicly available ADNI dataset and a private CLAS dataset have demonstrated the effectiveness of the proposed method. The proposed model is straightforward to train and test with only 5-10 seconds on CPUs and is suitable for medical tasks with small datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源