论文标题

基于自适应神经网络随机过滤器的控制器,用于态度跟踪和干扰拒绝

Adaptive Neural Network Stochastic-Filter-based Controller for Attitude Tracking with Disturbance Rejection

论文作者

Hashim, Hashim A., Vamvoudakis, Kyriakos G.

论文摘要

本文提出了一个实时神经网络(NN)在特殊正交组$ so(3)$的谎言组上基于随机过滤器的控制器,作为态度跟踪问题的一种新方法。引入的解决方案包括两个部分:过滤器和控制器。首先,提出了一种基于自适应的NN随机滤波器,该过滤器是使用直接由板载传感器提供的测量值估算态度组件和动力学的。过滤器设计说明了态度动态固有的测量不确定性,即未知的偏差和噪声损坏的角速度测量。所提出的基于NN的随机滤波器的闭环信号已显示为半全球最终有界的(SGUUB)。其次,提出了一项关于$(3)$的新颖控制法与拟议的估计器。控制法解决了未知的骚乱。另外,已显示的基于滤波器的控制器的闭环信号已显示为SGuub。提出的方法通过提供从低成本惯性测量单元中提取的数据提供所需的控制信号来提供强大的跟踪性能。尽管基于过滤器的控制器以连续形式呈现,但也提出了离散实现。此外,给出了所提出方法的单位定点形式。使用其离散形式证明了所提出的基于滤波器的控制器的有效性和鲁棒性,并考虑较低的采样率,高初始化误差,高级测量不确定性和未知的干扰。关键字:神经自适应,估计器,过滤器,观察者,控制系统,轨迹跟踪,Lyapunov稳定性,随机微分方程,非线性滤波器,态度跟踪控制,基于观察者的控制器。

This paper proposes a real-time neural network (NN) stochastic filter-based controller on the Lie Group of the Special Orthogonal Group $SO(3)$ as a novel approach to the attitude tracking problem. The introduced solution consists of two parts: a filter and a controller. Firstly, an adaptive NN-based stochastic filter is proposed that estimates attitude components and dynamics using measurements supplied by onboard sensors directly. The filter design accounts for measurement uncertainties inherent to the attitude dynamics, namely unknown bias and noise corrupting angular velocity measurements. The closed loop signals of the proposed NN-based stochastic filter have been shown to be semi-globally uniformly ultimately bounded (SGUUB). Secondly, a novel control law on $SO(3)$ coupled with the proposed estimator is presented. The control law addresses unknown disturbances. In addition, the closed loop signals of the proposed filter-based controller have been shown to be SGUUB. The proposed approach offers robust tracking performance by supplying the required control signal given data extracted from low-cost inertial measurement units. While the filter-based controller is presented in continuous form, the discrete implementation is also presented. Additionally, the unit-quaternion form of the proposed approach is given. The effectiveness and robustness of the proposed filter-based controller is demonstrated using its discrete form and considering low sampling rate, high initialization error, high-level of measurement uncertainties, and unknown disturbances. Keywords: Neuro-adaptive, estimator, filter, observer, control system, trajectory tracking, Lyapunov stability, stochastic differential equations, nonlinear filter, attitude tracking control, observer-based controller.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源