论文标题
skt calabi-yau $ \ partial \ bar \ partial $ -manifolds aeppli类的两极分化
Polarisation of SKT Calabi-Yau $\partial\bar\partial$-manifolds by Aeppli classes
论文作者
论文摘要
给定一个$ \ partial \ bar \ partial $ -manifold $ x $,带有微不足道的规范捆绑包并携带公制$ω$,使得$ \ partial \ bar \partialΩ= 0 $,我们介绍了$ x $ x $ x $ polarmitized aeppli cohomology class $ [$ x $ [ $ x $的Kuranishi家族中的$ [ω] _ $两极化的流形之间存在着对应关系,而从我们定义的意义上讲,它们是原始的。我们还研究了任意的鸡巴原始类别中原始元素的存在,并比较了kuranishi家族中$ [ω] _a $极化的歧管的基础空间上的指标。
Given a $\partial\bar\partial$-manifold $X$ with trivial canonical bundle and carrying a metric $ω$ such that $\partial\bar\partialω=0$, we introduce the concept of small deformations of $X$ polarised by the Aeppli cohomology class $[ω]_A$ of an SKT metric $ω$. There is a correspondence between the manifolds polarised by $[ω]_A$ in the Kuranishi family of $X$ and the Bott-Chern classes that are primitive in a sense that we define. We also investigate the existence of a primitive element in an arbitrary Bott-Chern primitive class and compare the metrics on the base space of the subfamily of manifolds polarised by $[ω]_A$ within the Kuranishi family.