论文标题

非热特征态和吉尼伯合奏的纠缠熵

Entanglement Entropy of Non-Hermitian Eigenstates and the Ginibre Ensemble

论文作者

Cipolloni, Giorgio, Kudler-Flam, Jonah

论文摘要

纠缠熵是表征量子多体系统中通用特征的强大工具。在量子混沌遗产系统中,典型的本征态几乎具有最大的纠缠,并且波动很小。在这里,我们表明,对于以吉尼布尔集团为模型的非高级人体多体量子混乱的哈密顿人,典型特征态的纠缠熵被极大地抑制了。对于足够大的系统,熵不会随着希尔伯特空间维度而生长,并且波动的阶段相等。我们得出了新型的纠缠频谱,该光谱在复杂的平面和强依赖性方面具有无限的支持。我们提供了普遍性的证据和类似行为的证据,可以在非热的Sachdev-ye-Kitaev(Nsyk)模型中发现,这表明Ginibre集团对耗散性多体量子混乱的一般适用性。

Entanglement entropy is a powerful tool in characterizing universal features in quantum many-body systems. In quantum chaotic Hermitian systems, typical eigenstates have near maximal entanglement with very small fluctuations. Here, we show that for Hamiltonians displaying non-Hermitian many-body quantum chaos, modeled by the Ginibre ensemble, the entanglement entropy of typical eigenstates is greatly suppressed. The entropy does not grow with the Hilbert space dimension for sufficiently large systems and the fluctuations are of equal order. We derive the novel entanglement spectrum that has infinite support in the complex plane and strong energy dependence. We provide evidence of universality and similar behavior is found in the non-Hermitian Sachdev-Ye-Kitaev (nSYK) model, indicating the general applicability of the Ginibre ensemble to dissipative many-body quantum chaos.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源