论文标题
使用密集连接的多维动态网络的无分段PVC用于心脏SPECT
Segmentation-free PVC for Cardiac SPECT using a Densely-connected Multi-dimensional Dynamic Network
论文作者
论文摘要
在核成像中,有限的分辨率会导致影响图像清晰度和定量准确性的部分体积效应(PVE)。已证明来自CT或MRI的高分辨率解剖信息的部分体积校正(PVC)方法已被证明是有效的。但是,这种解剖学引导的方法通常需要乏味的图像注册和分割步骤。由于缺乏具有高端CT和相关运动伪像的混合SPECT/CT扫描仪,因此很难获得准确的分割器官模板,尤其是在心脏Spect Imaging中。轻微的错误注册/错误分段将导致PVC后的图像质量严重降解。在这项工作中,我们开发了一种基于深度学习的方法,用于快速心脏SPECT PVC,而无需解剖信息和相关器官分割。所提出的网络涉及密集连接的多维动态机制,即使网络得到了充分训练,也可以根据输入图像对卷积内核进行调整。引入了心脏内血容量(IMBV)作为网络优化的附加临床损失函数。提出的网络显示,使用Technetium-99m标记的红细胞在64板的CT上获得了GE发现NM/CT 570C专用心脏SPECT扫描仪上获得的28个犬类研究表现。这项工作表明,与没有这种机制的同一网络相比,具有密度连接的动态机制的提出的网络产生了优越的结果。结果还表明,没有解剖信息的提议的网络可以与解剖学引导的PVC方法产生的图像产生具有统计上可比的IMBV测量的图像,这可能有助于临床翻译。
In nuclear imaging, limited resolution causes partial volume effects (PVEs) that affect image sharpness and quantitative accuracy. Partial volume correction (PVC) methods incorporating high-resolution anatomical information from CT or MRI have been demonstrated to be effective. However, such anatomical-guided methods typically require tedious image registration and segmentation steps. Accurately segmented organ templates are also hard to obtain, particularly in cardiac SPECT imaging, due to the lack of hybrid SPECT/CT scanners with high-end CT and associated motion artifacts. Slight mis-registration/mis-segmentation would result in severe degradation in image quality after PVC. In this work, we develop a deep-learning-based method for fast cardiac SPECT PVC without anatomical information and associated organ segmentation. The proposed network involves a densely-connected multi-dimensional dynamic mechanism, allowing the convolutional kernels to be adapted based on the input images, even after the network is fully trained. Intramyocardial blood volume (IMBV) is introduced as an additional clinical-relevant loss function for network optimization. The proposed network demonstrated promising performance on 28 canine studies acquired on a GE Discovery NM/CT 570c dedicated cardiac SPECT scanner with a 64-slice CT using Technetium-99m-labeled red blood cells. This work showed that the proposed network with densely-connected dynamic mechanism produced superior results compared with the same network without such mechanism. Results also showed that the proposed network without anatomical information could produce images with statistically comparable IMBV measurements to the images generated by anatomical-guided PVC methods, which could be helpful in clinical translation.