论文标题

基于量量的联合贝叶斯学习在FOG无线电访问网络中的内容流行度预测

Content Popularity Prediction Based on Quantized Federated Bayesian Learning in Fog Radio Access Networks

论文作者

Tao, Yunwei, Jiang, Yanxiang, Zheng, Fu-Chun, Zhu, Pengcheng, Niyato, Dusit, You, Xiaohu

论文摘要

在本文中,我们调查了启用了启用缓存的雾无线电访问网络(F-RAN)的内容流行度预测问题。为了以高准确性和低复杂性预测内容的流行,我们提出了一个基于高斯流程的回归器,以模拟内容请求模式。首先,我们提出的模型捕获了内容特征和受欢迎程度之间的关系。然后,我们利用贝叶斯学习来训练模型参数,这对于过度拟合非常可靠。但是,贝叶斯方法通常无法找到后验分布的闭合形式表达。为了解决此问题,我们采用随机方差降低梯度哈密顿蒙特卡洛(SVRG-HMC)方法来近似后验分布。为了利用其他雾接入点(F-AP)的计算资源并减少开销的通信,我们提出了一个量化的联合学习(FL)框架,将其与贝叶斯学习结合在一起。量化的联合贝叶斯学习框架允许每个F-AP在量化和编码后将梯度发送到云服务器。它可以有效地实现预测准确性和通信间接费用之间的权衡。仿真结果表明,我们提出的政策的绩效优于现有政策。

In this paper, we investigate the content popularity prediction problem in cache-enabled fog radio access networks (F-RANs). In order to predict the content popularity with high accuracy and low complexity, we propose a Gaussian process based regressor to model the content request pattern. Firstly, the relationship between content features and popularity is captured by our proposed model. Then, we utilize Bayesian learning to train the model parameters, which is robust to overfitting. However, Bayesian methods are usually unable to find a closed-form expression of the posterior distribution. To tackle this issue, we apply a stochastic variance reduced gradient Hamiltonian Monte Carlo (SVRG-HMC) method to approximate the posterior distribution. To utilize the computing resources of other fog access points (F-APs) and to reduce the communications overhead, we propose a quantized federated learning (FL) framework combining with Bayesian learning. The quantized federated Bayesian learning framework allows each F-AP to send gradients to the cloud server after quantizing and encoding. It can achieve a tradeoff between prediction accuracy and communications overhead effectively. Simulation results show that the performance of our proposed policy outperforms the existing policies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源