论文标题

具有稳定否定的生成数据

Generative Datalog with Stable Negation

论文作者

Alviano, Mario, Lanzinger, Matthias, Morak, Michael, Pieris, Andreas

论文摘要

扩展具有随机行为(例如概率选择或随机抽样)的编程语言在计算机科学方面具有悠久的传统。 Barany等人提出的一种声明性的概率编程语言是一种声明性的概率编程语言。在2017年,在标准关系数据库上运行。特别是Barany等。提出的生成数据元,这是数据元的概率扩展,该数据允许从离散概率分布中进行采样。直觉上,输入数据库D上生成数据元程序P的输出是D和P的最小模型(所谓的可能结果)的概率空间。这是数据库(确定性)语义的自然概括,其中程序在数据库上的输出是其独特的最小模型。一个自然的问题是,如何使用否定的有用特征来丰富生成数据,从而导致严格表现力的声明性概率编程语言。特别是,具有挑战性的问题是如何稳健地定义具有否定生成数据的概率语义。我们的目标是根据稳定的模型语义来解释否定,为这个问题提供答案。

Extending programming languages with stochastic behaviour such as probabilistic choices or random sampling has a long tradition in computer science. A recent development in this direction is a declarative probabilistic programming language, proposed by Barany et al. in 2017, which operates on standard relational databases. In particular, Barany et al. proposed generative Datalog, a probabilistic extension of Datalog that allows sampling from discrete probability distributions. Intuitively, the output of a generative Datalog program P on an input database D is a probability space over the minimal models of D and P, the so-called possible outcomes. This is a natural generalization of the (deterministic) semantics of Datalog, where the output of a program on a database is their unique minimal model. A natural question to ask is how generative Datalog can be enriched with the useful feature of negation, which in turn leads to a strictly more expressive declarative probabilistic programming language. In particular, the challenging question is how the probabilistic semantics of generative Datalog with negation can be robustly defined. Our goal is to provide an answer to this question by interpreting negation according to the stable model semantics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源