论文标题
不可交通的最大麦古迪人不平等现象
Noncommutative maximal ergodic inequalities for amenable groups
论文作者
论文摘要
我们证明了一个方向的千古定理和对非交通措施空间的行为的最大不等式。为此,我们建立了一个平方函数估计,以量化千古平均值和某些条件期望之间的差异。我们的主要技术结果是基于Ornstein和Weiss的准倾斜度以及平方函数结合的良好的过滤,我们源于非加倍的非共同calderón-Zygmund分解。对于通常的措施空间的行动,我们获得了新的变分的千古不平等和跳跃估计。
We prove a pointwise ergodic theorem and a maximal inequality for actions of amenable groups on noncommutative measure spaces. To do so, we establish a square function estimate quantifying the difference between ergodic averages and some conditional expectations. Our main technical results are the construction of a well-behaved filtration, based on the quasi-tilings of Ornstein and Weiss, and the square function bound, which we derive from non-doubling noncommutative Calderón-Zygmund decomposition. For actions on usual measure spaces, we obtain new variational ergodic inequalities and jump estimates.