论文标题

信号处理中神经网络应用的计算复杂性评估

Computational Complexity Evaluation of Neural Network Applications in Signal Processing

论文作者

Freire, Pedro, Srivallapanondh, Sasipim, Napoli, Antonio, Prilepsky, Jaroslaw E., Turitsyn, Sergei K.

论文摘要

在本文中,我们提供了一种系统的方法来评估和比较数字信号处理中神经网络层的计算复杂性。我们提供并链接四个软件到硬件复杂性度量,定义了不同的复杂度指标与层的超参数的关系。本文解释了如何计算这四个指标用于前馈和经常性层,并定义了在这种情况下,我们应该根据我们是否表征更软件或面向硬件的应用程序来使用特定的度量。新引入的四个指标之一,称为“添加和位移位数(NAB)”,用于异质量化。 NABS不仅表征了操作中使用的位宽的影响,还表征了算术操作中使用的量化类型。我们打算这项工作作为与神经网络在实时数字信号处理中应用相关的复杂性估计级别(目的)的基线,旨在统一计算复杂性估计。

In this paper, we provide a systematic approach for assessing and comparing the computational complexity of neural network layers in digital signal processing. We provide and link four software-to-hardware complexity measures, defining how the different complexity metrics relate to the layers' hyper-parameters. This paper explains how to compute these four metrics for feed-forward and recurrent layers, and defines in which case we ought to use a particular metric depending on whether we characterize a more soft- or hardware-oriented application. One of the four metrics, called `the number of additions and bit shifts (NABS)', is newly introduced for heterogeneous quantization. NABS characterizes the impact of not only the bitwidth used in the operation but also the type of quantization used in the arithmetical operations. We intend this work to serve as a baseline for the different levels (purposes) of complexity estimation related to the neural networks' application in real-time digital signal processing, aiming at unifying the computational complexity estimation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源