论文标题
cnot $^{n} $和c $ _2 $而不是$^2 $ gates的平行实现,通过hononuclear和杂核försterrydberg Atoms的互动
Parallel implementation of CNOT$^{N}$ and C$_2$NOT$^2$ gates via homonuclear and heteronuclear Förster interactions of Rydberg atoms
论文作者
论文摘要
我们分析了高保真多QNOT $^{n} $和c $ _ {2} $而不是$^{2} $ GATE的方案,用于碱性中性原子作为Qubits。这些方案是基于M.Müller等人提出的电磁诱导的透明度和Rydberg封锁。 [PRL 102,170502(2009)]。在原始论文中,基于rydberg封锁的多量cnot $^{\ text {n}} $ GATE的保真度受到目标原子之间的不良相互作用以及耦合激光强度的限制。我们提出通过通过Förster共振和靶原子的Förster共振来克服这些限制,而靶原子与较弱的范德华的相互作用耦合。我们已经优化了栅极性能,以实现更高的保真度,同时保持耦合激光强度尽可能小,以提高栅极方案的实验可行性。我们还考虑了c $ _ {2} $而不是$^{2} $门的方案的优化,其中保真度受控制 - 控制,控制目标和目标目标交互能量之间的关系影响。我们的数字模拟证实,CNOT $^4 $门(单个控制和四个目标原子)的保真度可达$ 99.3 \%$,而对于实验可行的条件,C $ _2 $ _2 $ _2 $ _2 $ _2 $ _2 $ $ _2 $ $的忠诚度最高为99.7 \%\%。
We analyze schemes of high-fidelity multiqubit CNOT$^{N}$ and C$_{2}$NOT$^{2}$ gates for alkali-metal neutral atoms used as qubits. These schemes are based on the electromagnetically induced transparency and Rydberg blockade, as proposed by M. Müller et al. [PRL 102, 170502 (2009)]. In the original paper, the fidelity of multi-qubit CNOT$^{\text{N}}$ gate based on Rydberg blockade was limited by the undesirable interaction between the target atoms, and by the coupling laser intensity. We propose overcoming these limits by using strong heteronuclear dipole-dipole interactions via Förster resonances for control and target atoms, while the target atoms are coupled by weaker van der Waals interaction. We have optimized the gate performance in order to achieve higher fidelity, while keeping coupling laser intensity as small as possible in order to improve the experimental feasibility of the gate schemes. We also considered optimization of schemes of C$_{2}$NOT$^{2}$ gates, where the fidelity is affected by the relation between the control-control, control-target and target-target interaction energies. Our numeric simulations confirm that the fidelity of CNOT$^4$ gate (single control and four target atoms) can be up to $99.3\%$ and the fidelity of C$_2$NOT$^2$ (two control and two target atoms) is up to $99.7\%$ for the conditions which are experimentally feasible.