论文标题
是CORE-CUSP问题的观点问题:针对数值模拟的牛仔裤各向异性建模
Is the core-cusp problem a matter of perspective: Jeans Anisotropic Modeling against numerical simulations
论文作者
论文摘要
28个矮星系的模拟成员星是由宇宙学的模拟构建的,这反映了现实恒星示踪剂的动态状态。轴对称牛仔裤各向异性多高斯膨胀(JAM)建模用于每个系统的6,000星颗粒,以恢复潜在的物质分布。单独恢复的恒星或暗物质组成部分的恢复很差,但是总概况受到更合理的限制。示踪剂半径半径内的质量被恢复最紧,质量为200至300 pc,$ m(200-300 \ mathrm {pc})$,是公正的约束合奏,散布为0.167 dex。如果使用2,000个粒子和仅具有典型错误的视线速度,则$ m(200-300 \ mathrm {pc})$中的散布增加了$ \ sim $ 50%。具有强大流出的静态Sagittarius DSPH式系统和星形式系统显示出独特的特征,$ M(200-300 \ Mathrm {PC})$主要估计了前者的估计,后者可能会过高估计。这些偏见与动态状态相关,这是由于静态系统中潮汐效应或星形成系统中的银河风的潮汐作用而导致的,这使它们脱离了平衡。在包括Gaia DR3适当的运动错误之后,我们发现正确的动作与附近系统的视线速度一样有用,价格为$ <\ sim $ 60 kpc。通过将实际密度曲线和动态约束推断到低于分辨率以下的尺度,我们发现150 pc之内的质量可以公正地约束合奏,散布$ \ sim $ 0.255 dex。最后,我们表明,基于GAIA DR3的适当运动误差,可以检测到附近系统中成员恒星的收缩。
Mock member stars for 28 dwarf galaxies are constructed from the cosmological Auriga simulation, which reflect the dynamical status of realistic stellar tracers. The axis-symmetric Jeans Anisotropic Multi-Gaussian Expansion (JAM) modeling is applied to 6,000 star particles for each system, to recover the underlying matter distribution. The stellar or dark matter component individually is poorly recovered, but the total profile is constrained more reasonably. The mass within the half-mass radius of tracers is recovered the tightest, and the mass between 200 and 300 pc, $M(200-300\mathrm{pc})$, is constrained ensemble unbiasedly, with a scatter of 0.167 dex. If using 2,000 particles and only line-of-sight velocities with typical errors, the scatter in $M(200-300\mathrm{pc})$ is increased by $\sim$50%. Quiescent Sagittarius dSph-like systems and star-forming systems with strong outflows show distinct features, with $M(200-300\mathrm{pc})$ mostly under-estimated for the former, and likely over-estimated for the latter. The biases correlate with the dynamical status, which is a result of contraction motions due to tidal effects in quiescent systems or galactic winds in star-forming systems, driving them out of equilibrium. After including Gaia DR3 proper motion errors, we find proper motions can be as useful as line-of-sight velocities for nearby systems at $<\sim$60 kpc. By extrapolating the actual density profiles and the dynamical constraints down to scales below the resolution, we find the mass within 150 pc can be constrained ensemble unbiasedly, with a scatter of $\sim$0.255 dex. In the end, we show that the contraction of member stars in nearby systems is detectable based on Gaia DR3 proper motion errors.