论文标题

在新条件下合成滚动轴承故障样品:基于修改的CGAN的框架

Synthesizing Rolling Bearing Fault Samples in New Conditions: A framework based on a modified CGAN

论文作者

Ahang, Maryam, Jalayer, Masoud, Shojaeinasab, Ardeshir, Ogunfowora, Oluwaseyi, Charter, Todd, Najjaran, Homayoun

论文摘要

轴承是容易出乎意料故障的旋转机的重要组成部分之一。因此,轴承诊断和状况监测对于降低众多行业的运营成本和停机时间至关重要。在各种生产条件下,轴承可以在一系列负载和速度下进行操作,这会导致与每种故障类型相关的不同振动模式。正常数据很足够,因为系统通常在所需条件下工作。另一方面,故障数据很少见,在许多情况下,故障类别没有记录数据。访问故障数据对于开发数据驱动的故障诊断工具至关重要,该工具可以提高操作的性能和安全性。为此,引入了基于条件生成对抗网络(CGAN)的新型算法。该算法对任何实际故障条件的正常和故障数据进行培训,从目标条件的正常数据中生成故障数据。所提出的方法在现实世界中的数据集上进行了验证,并为不同条件生成故障数据。实施了几种最先进的分类器和可视化模型,以评估合成数据的质量。结果证明了所提出的算法的功效。

Bearings are one of the vital components of rotating machines that are prone to unexpected faults. Therefore, bearing fault diagnosis and condition monitoring is essential for reducing operational costs and downtime in numerous industries. In various production conditions, bearings can be operated under a range of loads and speeds, which causes different vibration patterns associated with each fault type. Normal data is ample as systems usually work in desired conditions. On the other hand, fault data is rare, and in many conditions, there is no data recorded for the fault classes. Accessing fault data is crucial for developing data-driven fault diagnosis tools that can improve both the performance and safety of operations. To this end, a novel algorithm based on Conditional Generative Adversarial Networks (CGANs) is introduced. Trained on the normal and fault data on any actual fault conditions, this algorithm generates fault data from normal data of target conditions. The proposed method is validated on a real-world bearing dataset, and fault data are generated for different conditions. Several state-of-the-art classifiers and visualization models are implemented to evaluate the quality of the synthesized data. The results demonstrate the efficacy of the proposed algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源