论文标题

任务自适应的几杆节点分类

Task-Adaptive Few-shot Node Classification

论文作者

Wang, Song, Ding, Kaize, Zhang, Chuxu, Chen, Chen, Li, Jundong

论文摘要

节点分类在各种图挖掘任务中至关重要。在实践中,实际图通常遵循长尾分布,其中大量类仅由有限的标记节点组成。尽管图神经网络(GNN)在节点分类方面取得了显着改善,但在这种情况下,它们的性能大大降低。主要原因可以归因于元训练和元检验之间的巨大概括差距,这是由于元任务中不同节点/类别分布引起的任务差异(即节点级别级别和类级别差异)。因此,为了有效地减轻任务差异的影响,我们在少量射击学习设置下提出了一个任务自适应的节点分类框架。具体而言,我们首先在具有丰富标记节点的类中积累了元知识。然后,我们通过我们提出的任务自适应模块将这些知识转移到有限的标记节点的类别上。特别是,为了适应元任务之间的不同节点/类分布,我们提出了三个基本模块,以执行\ emph {node-level},\ emph {class-level}和\ emph {task-task {task-level}的适应。这样,我们的框架可以对不同的元任务进行适应,从而提高元检验任务上的模型概括性能。对四个普遍的节点分类数据集进行了广泛的实验,证明了我们的框架优于最先进的基线。我们的代码可在https://github.com/songw-sw/tent上提供。

Node classification is of great importance among various graph mining tasks. In practice, real-world graphs generally follow the long-tail distribution, where a large number of classes only consist of limited labeled nodes. Although Graph Neural Networks (GNNs) have achieved significant improvements in node classification, their performance decreases substantially in such a few-shot scenario. The main reason can be attributed to the vast generalization gap between meta-training and meta-test due to the task variance caused by different node/class distributions in meta-tasks (i.e., node-level and class-level variance). Therefore, to effectively alleviate the impact of task variance, we propose a task-adaptive node classification framework under the few-shot learning setting. Specifically, we first accumulate meta-knowledge across classes with abundant labeled nodes. Then we transfer such knowledge to the classes with limited labeled nodes via our proposed task-adaptive modules. In particular, to accommodate the different node/class distributions among meta-tasks, we propose three essential modules to perform \emph{node-level}, \emph{class-level}, and \emph{task-level} adaptations in each meta-task, respectively. In this way, our framework can conduct adaptations to different meta-tasks and thus advance the model generalization performance on meta-test tasks. Extensive experiments on four prevalent node classification datasets demonstrate the superiority of our framework over the state-of-the-art baselines. Our code is provided at https://github.com/SongW-SW/TENT.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源