论文标题
二维总吸收光谱与条件生成对抗网络
Two-dimensional total absorption spectroscopy with conditional generative adversarial networks
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We explore the use of machine learning techniques to remove the response of large volume $γ$-ray detectors from experimental spectra. Segmented $γ$-ray total absorption spectrometers (TAS) allow for the simultaneous measurement of individual $γ$-ray energy (E$_γ$) and total excitation energy (E$_x$). Analysis of TAS detector data is complicated by the fact that the E$_x$ and E$_γ$ quantities are correlated, and therefore, techniques that simply unfold using E$_x$ and E$_γ$ response functions independently are not as accurate. In this work, we investigate the use of conditional generative adversarial networks (cGANs) to simultaneously unfold $E_{x}$ and $E_γ$ data in TAS detectors. Specifically, we employ a \texttt{Pix2Pix} cGAN, a generative modeling technique based on recent advances in deep learning, to treat \rawmatrix~ matrix unfolding as an image-to-image translation problem. We present results for simulated and experimental matrices of single-$γ$ and double-$γ$ decay cascades. Our model demonstrates characterization capabilities within detector resolution limits for upwards of 93% of simulated test cases.