论文标题
非平衡性非理想玻色 - 凝冷凝水的负压
Negative Compressability of Non-Equilibrium Non-Ideal Bose--Einstein Condensate
论文作者
论文摘要
通常在大规范($μvt $)合奏中考虑理想的平衡玻色 - 凝结物(BEC),这意味着化学平衡与环境存在。但是,在大多数实验场景中,BEC中的颗粒总数取决于初始条件或耗散和抽水之间的平衡。结果,BEC可能具有热平衡,但几乎从来没有化学平衡。此外,由于颗粒之间的相互作用,许多实验上可实现的BEC是非理想的。在最近的工作[10.1103/physrevlett.128.065301]中,已经表明,系统中,希尔伯特空间中的不变子空间出现在非平衡的BEC中,以快速的热化限制。在这些子空间中的每个子空间中,都有一定数量的粒子建立了Gibbs分布,这使得可以在每个不变子空间中独立研究非理想的非平衡性能。在这项工作中,我们分析了由于BEC中非理想相互作用引起的分散曲线变化而引起的BEC稳定性。通常,非理想的相互作用会导致分散曲线的红移或蓝光,并导致颗粒有效质量的变化。我们表明,分散曲线的红移可以导致BEC的负压,而有效质量的变化始终会使BEC更加稳定。我们发现在BEC中发现粒子密度的明确条件,在该粒子密度中出现负压。
An ideal equilibrium Bose--Einstein condensate (BEC) is usually considered in the grand canonical ($μV T$) ensemble, which implies the presence of the chemical equilibrium with the environment. However, in most experimental scenarios, the total amount of particles in BEC is determined either by the initial conditions or by the balance between dissipation and pumping. As a result, BEC may possess the thermal equilibrium but almost never the chemical equilibrium. In addition, many experimentally achievable BECs are non-ideal due to interaction between particles. In the recent work [10.1103/PhysRevLett.128.065301], it has been shown that invariant subspaces in the system Hilbert space appear in non-equilibrium BEC in the fast thermalization limit. In each of these subspaces, Gibbs distribution is established with a certain number of particles that makes it possible to investigate properties of non-ideal non-equilibrium BEC independently in each invariant subspace. In this work, we analyze the BEC stability due to change in dispersion curve caused by non-ideal interactions in BEC. Generally, non-ideal interactions lead to the redshift or blueshift of the dispertion curve and to the change in the effective mass of the particles. We show that the redshift of the dispersion curve can lead to the negative compressibility of BEC, whereas the change in the effective mass always makes BEC more stable. We find the explicit condition for the particle density in BEC, at which the negative compressibility appears.