论文标题
Kirkwood-dirac准综合性方法的统计数据可观察到的统计数据
Kirkwood-Dirac quasiprobability approach to the statistics of incompatible observables
论文作者
论文摘要
最近的工作揭示了Kirkwood-Dirac准综合性(KDQ)的核心作用,作为一种工具,可以在冷凝物理物理学(扰动物理学(乱扰,动力学过渡))计量学(标准和后选择),热力学和热力学(功率输出和波动型),基础(基础),基础(基础)中,正确地说明非经典特征。鉴于KDQ在整个量子科学方面的相关性日益增长,我们的目标是两个方面:首先,我们强调了准生产力在表征量子可观察到的统计数据中所起的作用,并且在存在测量不兼容的情况下。通过这种方式,我们展示了KDQ如何自然基础并统一量子相关因子,量子电流,loschmidt回声和弱值。其次,我们通过讨论各种方案来访问KDQ及其非古典性特征,从而提供新颖的理论和实验观点。
Recent work has revealed the central role played by the Kirkwood-Dirac quasiprobability (KDQ) as a tool to properly account for non-classical features in the context of condensed matter physics (scrambling, dynamical phase transitions) metrology (standard and post-selected), thermodynamics (power output and fluctuation theorems), foundations (contextuality, anomalous weak values) and more. Given the growing relevance of the KDQ across the quantum sciences, our aim is two-fold: First, we highlight the role played by quasiprobabilities in characterizing the statistics of quantum observables and processes in the presence of measurement incompatibility. In this way, we show how the KDQ naturally underpins and unifies quantum correlators, quantum currents, Loschmidt echoes, and weak values. Second, we provide novel theoretical and experimental perspectives by discussing a wide variety of schemes to access the KDQ and its non-classicality features.