论文标题
通过对抗局部演示的对抗性模仿来学习敏捷技能
Learning Agile Skills via Adversarial Imitation of Rough Partial Demonstrations
论文作者
论文摘要
学习敏捷技能是机器人技术的主要挑战之一。为此,加强学习方法取得了令人印象深刻的结果。这些方法需要根据奖励功能或可以在模拟中查询的专家来提供明确的任务信息,以提供目标控制输出,从而限制其适用性。在这项工作中,我们提出了一种生成的对抗方法,用于从部分和潜在的物理不兼容的演示中推断出奖励功能,以成功地获得参考或专家演示的成功技能。此外,我们表明,通过使用wasserstein gan公式和从以粗糙和部分信息为输入的示范中进行过渡,我们能够提取强大的策略并能够模仿证明的行为。最后,在敏捷四倍的机器人的敏捷四倍的机器人上测试了获得的技能,称为Solo 8,并忠实地复制了手持人类示范。
Learning agile skills is one of the main challenges in robotics. To this end, reinforcement learning approaches have achieved impressive results. These methods require explicit task information in terms of a reward function or an expert that can be queried in simulation to provide a target control output, which limits their applicability. In this work, we propose a generative adversarial method for inferring reward functions from partial and potentially physically incompatible demonstrations for successful skill acquirement where reference or expert demonstrations are not easily accessible. Moreover, we show that by using a Wasserstein GAN formulation and transitions from demonstrations with rough and partial information as input, we are able to extract policies that are robust and capable of imitating demonstrated behaviors. Finally, the obtained skills such as a backflip are tested on an agile quadruped robot called Solo 8 and present faithful replication of hand-held human demonstrations.