论文标题
研究基于相野鸭方法衰减均质的各向同性湍流的液滴分解过程
Study of a droplet breakup process in decaying homogeneous isotropic turbulence based on the phase-field DUGKS approach
论文作者
论文摘要
通过求解Cahn-Hilliard-navier-Stokes方程,研究了腐烂的各向同性湍流中球形液滴的分解,并使用离散的统一的统一的气体动力学方案与基于自由能的基于基于基的相相模型相结合。我们通过假设两个流体相具有相同的密度和相同的粘度来关注湍流和表面张力对分裂过程的综合作用。系统的关键物理参数包括音量分数(6.54%),初始Weber编号(21.7)和初始的Taylor Microscale Reynolds编号(58)。当最初的球形液滴演变成具有复杂结构的不规则几何形状时,液滴进化的三个不同阶段被鉴定出变形阶段,当许多子液滴形成时,分裂阶段以及液滴在朝球体形状放松时的恢复阶段。从几个角度从系统地分析这三个阶段:(1)关于最大直径,液滴的总数,液滴总数,总界面面积和液滴直径的概率分布的几何观点,(2)一个动态的观点,是指在速度和涡流中的速度和涡流的流动性,(3)conterfortion(3动能 /耗散速率及其傅立叶光谱,(4)基于球形谐波的能量学,这些能量是关于相对于初始液滴中心的不同长度尺度和不同半径的同时传递动能的,以及(5)系统的全球动能和系统的自由能的时间演化。
The breakup of a spherical droplet in a decaying homogeneous isotropic turbulence is studied by solving the Cahn-Hilliard-Navier-Stokes equations, using the discrete unified gas kinetic scheme combined with the free-energy-based phase-field model. We focus on the combined effects of turbulence and surface tension on the breakup process by assuming that the two fluid phases have the same density and same viscosity. The key physical parameters of the system include the volume fraction (6.54%), the initial Weber number (21.7), and the initial Taylor microscale Reynolds number (58). Three distinct stages of droplet evolution are identified, namely, the deformation stage when the initially spherical droplet evolves into an irregular geometric shape with complex structures, the breakup stage when many daughter droplets are formed, and the restoration stage when the droplets relax towards spherical shape. These three stages are analyzed systematically from several perspectives: (1) a geometric perspective concerning the maximum equivalent diameter, the total number of droplets, total interface area, and probability distribution of droplet diameters, (2) a dynamic perspective concerning the evolution of local velocity and vorticity at the fluid-fluid interface, (3) a global perspective concerning the evolution of average kinetic energy / dissipation rate and their Fourier spectra, (4) spherical harmonics based energetics concerning simultaneous transfer of kinetic energy across different length scales and different radii relative to initial droplet center, and (5) the time evolution of global kinetic energy and free energy of the system.