论文标题

Riemann Zeta功能的Riemann表面

Riemann surface of the Riemann zeta function

论文作者

Ivashkovich, S.

论文摘要

在本文中,我们将经典的Riemann Zeta视为三个变量的函数:一个是通常的复杂$ \ adyn $二维的函数= \ {z_n \} _ {n = 1}^{\ infty} $。 $ \ b = \ {1 \} _ {n = 1}^{\ infty} $和$ \ z = \ {\ frac {\ frac {1} {n} {n} {n} _ {n = 1}^{\ infty}^{\ infty}我们本文的目标是研究$ζ(\ b,\ z,s)$的均为三重$(\ a,\ z,s)$的函数。较小的更正,出现在《数学分析和应用杂志》杂志中。

In this paper we treat the classical Riemann zeta function as a function of three variables: one is the usual complex $\adyn$-dimensional, customly denoted as $s$, another two are complex infinite dimensional, we denote it as $\b = \{b_n\}_{n=1}^{\infty}$ and $\z =\{z_n\}_{n=1}^{\infty}$. When $\b = \{1\}_{n=1}^{\infty}$ and $\z = \{\frac{1}{n}\}_{n=1}^{\infty}$ one gets the usual Riemann zeta function. Our goal in this paper is to study the meromorphic continuation of $ζ(\b , \z ,s)$ as a function of the triple $(\a , \z , s)$. Minor corrections, to appear in the Journal of Mathematical Analysis and Applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源