论文标题
用不完美的注释的原型学习的原型学习
Prototype-Anchored Learning for Learning with Imperfect Annotations
论文作者
论文摘要
深度神经网络的成功在很大程度上取决于大量高质量注释的数据的可用性,但是这些数据很难或昂贵。由此产生的标签可能是类别不平衡,嘈杂或人类偏见。从不完美的注释数据集中学习无偏分类模型是一项挑战,我们通常会因过度拟合或不足而受苦。在这项工作中,我们彻底研究了流行的软马克斯损失和基于保证金的损失,并提供了一种可行的方法来加强通过最大化最小样本余量来限制的概括误差。我们为此目的进一步得出了最佳条件,这表明了类原型应锚定。通过理论分析的促进,我们提出了一种简单而有效的方法,即原型锚定学习(PAL),可以轻松地将其纳入各种基于学习的分类方案中以处理不完美的注释。我们通过对合成和现实世界数据集进行了广泛的实验来验证PAL对班级不平衡学习和降低噪声学习的有效性。
The success of deep neural networks greatly relies on the availability of large amounts of high-quality annotated data, which however are difficult or expensive to obtain. The resulting labels may be class imbalanced, noisy or human biased. It is challenging to learn unbiased classification models from imperfectly annotated datasets, on which we usually suffer from overfitting or underfitting. In this work, we thoroughly investigate the popular softmax loss and margin-based loss, and offer a feasible approach to tighten the generalization error bound by maximizing the minimal sample margin. We further derive the optimality condition for this purpose, which indicates how the class prototypes should be anchored. Motivated by theoretical analysis, we propose a simple yet effective method, namely prototype-anchored learning (PAL), which can be easily incorporated into various learning-based classification schemes to handle imperfect annotation. We verify the effectiveness of PAL on class-imbalanced learning and noise-tolerant learning by extensive experiments on synthetic and real-world datasets.