论文标题

在没有对手的限制性玻尔兹曼机器中删除表示形式

Disentangling representations in Restricted Boltzmann Machines without adversaries

论文作者

Fernandez-de-Cossio-Diaz, Jorge, Cocco, Simona, Monasson, Remi

论文摘要

无监督的机器学习的目标是建立复杂高维数据的表示形式,并与其属性简单关系。这样的分散表示形式使解释数据变化的重要潜在因素,并生成具有理想特征的新数据。解开表示表示的方法通常依赖于对抗方案,在该方案中,对表示形式进行调整以避免歧视者能够重建有关数据属性(标签)的信息。不幸的是,在实践中通常很难实施对抗性训练。在这里,我们提出了一种简单,有效的方法,即在无需培训对抗歧视器的情况下解开表示形式,并将我们的方法应用于受限的Boltzmann机器(RBM),这是最简单的基于代表的生成模型之一。我们的方法依赖于在训练过程中引入对权重的足够约束,这使我们能够将有关标签的信息集中在一小部分潜在变量上。该方法的有效性用四个示例说明了:面部图像的Celeba数据集,二维ISING模型,手写数字的MNIST数据集以及蛋白质家族的分类学。此外,我们还展示了我们的框架如何从数据的模具性数据上分析计算与其表示形式的分析相关的成本。

A goal of unsupervised machine learning is to build representations of complex high-dimensional data, with simple relations to their properties. Such disentangled representations make easier to interpret the significant latent factors of variation in the data, as well as to generate new data with desirable features. Methods for disentangling representations often rely on an adversarial scheme, in which representations are tuned to avoid discriminators from being able to reconstruct information about the data properties (labels). Unfortunately adversarial training is generally difficult to implement in practice. Here we propose a simple, effective way of disentangling representations without any need to train adversarial discriminators, and apply our approach to Restricted Boltzmann Machines (RBM), one of the simplest representation-based generative models. Our approach relies on the introduction of adequate constraints on the weights during training, which allows us to concentrate information about labels on a small subset of latent variables. The effectiveness of the approach is illustrated with four examples: the CelebA dataset of facial images, the two-dimensional Ising model, the MNIST dataset of handwritten digits, and the taxonomy of protein families. In addition, we show how our framework allows for analytically computing the cost, in terms of log-likelihood of the data, associated to the disentanglement of their representations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源