论文标题
一项有关可伸缩多目标优化的可学习进化算法的调查
A Survey on Learnable Evolutionary Algorithms for Scalable Multiobjective Optimization
论文作者
论文摘要
最近的几十年见证了多物理进化算法(MOEAS)的多目标优化问题(MOP)的巨大进步。但是,这些逐步改进的MOEAS并不一定配备了可扩展和可学习的问题解决问题的策略,以缩放型拖把带来的新挑战和宏伟的挑战,这些挑战不断提高各种方面的复杂性,主要包括昂贵的功能评估成本,许多目标,许多目标,大规模的搜索空间,时间范围的环境以及多核。在不同的情况下,设计新的强大MOEAS来有效地解决它们时需要不同的思维。在这种情况下,对机器学习技术的可学习MOEAS的研究在进化计算领域受到了广泛的关注。本文以扩大拖把和可学习的MOEAS的一般分类法开始,然后分析这些拖把对传统Moeas构成的挑战。然后,我们综合概述了可学习的MOEAS的最新进展,以求解各种扩展的MOP,主要集中在四个有吸引力的方向上(即,可学习的环境选择的可学习的进化歧视剂,可学习的进化产生者,可学习的进化评估器,用于可学习的功能评估和可学习的进化传输模量,以及用于分享或重复使用的优化经验)。为读者提供了可学习的Moeas的见解,以参考该领域的努力的一般轨道。
Recent decades have witnessed great advancements in multiobjective evolutionary algorithms (MOEAs) for multiobjective optimization problems (MOPs). However, these progressively improved MOEAs have not necessarily been equipped with scalable and learnable problem-solving strategies for new and grand challenges brought by the scaling-up MOPs with continuously increasing complexity from diverse aspects, mainly including expensive cost of function evaluations, many objectives, large-scale search space, time-varying environments, and multi-task. Under different scenarios, divergent thinking is required in designing new powerful MOEAs for solving them effectively. In this context, research studies on learnable MOEAs with machine learning techniques have received extensive attention in the field of evolutionary computation. This paper begins with a general taxonomy of scaling-up MOPs and learnable MOEAs, followed by an analysis of the challenges that these MOPs pose to traditional MOEAs. Then, we synthetically overview recent advances of learnable MOEAs in solving various scaling-up MOPs, focusing primarily on four attractive directions (i.e., learnable evolutionary discriminators for environmental selection, learnable evolutionary generators for reproduction, learnable evolutionary evaluators for function evaluations, and learnable evolutionary transfer modules for sharing or reusing optimization experience). The insight of learnable MOEAs is offered to readers as a reference to the general track of the efforts in this field.