论文标题
无人机图像通过加权连接的主导集的平行结构
Parallel Structure from Motion for UAV Images via Weighted Connected Dominating Set
论文作者
论文摘要
运动(ISFM)的增量结构已被广泛用于无人机图像方向。然而,由于顺序约束,其效率大大降低。尽管已经利用了分裂和纠纷策略来提高效率,但集群合并变得困难或取决于认真设计的重叠结构。本文提出了一种算法来提取集群合并的全局模型,并设计了平行的SFM解决方案,以实现有效,准确的无人机图像方向。首先,基于词汇树检索,选择了匹配对来构建一个无方向的加权匹配图,其边缘权重是通过考虑特征匹配的数量和分布来计算的。其次,一种称为加权连接的主导集(WCD)的算法旨在实现匹配图的简化并构建全局模型,该模型将边缘权重结合到图形节点选择中,并实现了全局模型的成功重建。第三,将匹配图同时分为紧凑型和非重叠的群集。平行重建后,借助全局和群集模型之间的共同3D点进行聚类合并。最后,通过使用经典倾斜和最新优化视图捕获的三个UAV数据集,通过全面的分析和比较来验证所提出的解决方案的验证。实验结果表明,所提出的平行SFM可以实现提高效率和比较取向精度的17.4倍。在绝对BA中,地理引用精度分别是水平和垂直方向的GSD(地面采样距离)值的2.0倍和3.0倍。对于并行SFM,提出的解决方案是更可靠的替代方案。
Incremental Structure from Motion (ISfM) has been widely used for UAV image orientation. Its efficiency, however, decreases dramatically due to the sequential constraint. Although the divide-and-conquer strategy has been utilized for efficiency improvement, cluster merging becomes difficult or depends on seriously designed overlap structures. This paper proposes an algorithm to extract the global model for cluster merging and designs a parallel SfM solution to achieve efficient and accurate UAV image orientation. First, based on vocabulary tree retrieval, match pairs are selected to construct an undirected weighted match graph, whose edge weights are calculated by considering both the number and distribution of feature matches. Second, an algorithm, termed weighted connected dominating set (WCDS), is designed to achieve the simplification of the match graph and build the global model, which incorporates the edge weight in the graph node selection and enables the successful reconstruction of the global model. Third, the match graph is simultaneously divided into compact and non-overlapped clusters. After the parallel reconstruction, cluster merging is conducted with the aid of common 3D points between the global and cluster models. Finally, by using three UAV datasets that are captured by classical oblique and recent optimized views photogrammetry, the validation of the proposed solution is verified through comprehensive analysis and comparison. The experimental results demonstrate that the proposed parallel SfM can achieve 17.4 times efficiency improvement and comparative orientation accuracy. In absolute BA, the geo-referencing accuracy is approximately 2.0 and 3.0 times the GSD (Ground Sampling Distance) value in the horizontal and vertical directions, respectively. For parallel SfM, the proposed solution is a more reliable alternative.