论文标题

实时探索铁电域壁的物理学:深度学习启用扫描探针显微镜

Exploring Physics of Ferroelectric Domain Walls in Real Time: Deep Learning Enabled Scanning Probe Microscopy

论文作者

Liu, Yongtao, Kelley, Kyle P., Funakubo, Hiroshi, Kalinin, Sergei V., Ziatdinov, Maxim

论文摘要

铁弹性域壁在铁电材料中的功能通过现场实现在扫描探针显微镜(SPM)实验中的现场实现。强大的深卷积神经网络(DCNN)是基于深度残留学习框架(RES)和整体巢式边缘检测(HED)实施的,并结合了以最大程度地降低分布式漂移效应。 DCNN用于SPM上的实时操作,将数据流转换为域壁的语义分割图像和相应的不确定性。我们进一步证明了在如此发现的结构壁上的预先选择的实验工作流程,并报告了(PBTIO3)PTO薄膜和高极化动态(与短铁弹性壁(与长铁弹性壁)相比,在长铁弹性壁上(与长铁纤维薄膜相比,plate Zirrs in Lead Zirrs),在A(pbtio3)PTO薄膜和高极化动态(非平面)中交替进行了交替的动态(平面外)铁弹性结构域壁。这项工作为扫描探针和其他显微镜中数据流的实时DCNN分析建立了框架,并突出了分布外效应和策略的作用,并在实时分析中改善它们。

The functionality of ferroelastic domain walls in ferroelectric materials is explored in real-time via the in-situ implementation of computer vision algorithms in scanning probe microscopy (SPM) experiment. The robust deep convolutional neural network (DCNN) is implemented based on a deep residual learning framework (Res) and holistically-nested edge detection (Hed), and ensembled to minimize the out-of-distribution drift effects. The DCNN is implemented for real-time operations on SPM, converting the data stream into the semantically segmented image of domain walls and the corresponding uncertainty. We further demonstrate the pre-selected experimental workflows on thus discovered domain walls, and report alternating high- and low- polarization dynamic (out-of-plane) ferroelastic domain walls in a (PbTiO3) PTO thin film and high polarization dynamic (out-of-plane) at short ferroelastic walls (compared with long ferroelastic walls) in a lead zirconate titanate (PZT) thin film. This work establishes the framework for real-time DCNN analysis of data streams in scanning probe and other microscopies and highlights the role of out-of-distribution effects and strategies to ameliorate them in real time analytics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源