论文标题

功能性非线性学习

Functional Nonlinear Learning

论文作者

Wang, Haixu, Cao, Jiguo

论文摘要

在随后的统计模型中,使用功能数据的表示比直接观察更方便和有益。这些表示在较低维空间中,从各个曲线中提取和压缩信息。功能数据分析中现有的表示学习方法通​​常使用线性映射,并按照多变量分析(例如功能主成分分析(FPCA))平行。但是,功能作为无限维对物体,有时具有无法通过线性映射发现的非线性结构。给定多元功能数据,线性方法将更加不知所措。就此而言,本文提出了一种功能性非线性学习(FUNNOL)方法,以充分代表较低维的特征空间中的多元功能数据。此外,我们合并了一个分类模型,以丰富表示在预测曲线标签中的能力。因此,Funnol的表示形式可用于曲线重建和分类。此外,我们已经将提出的模型赋予了解决丢失的观察问题以及进一步的观测能力的能力。所得的表示对观测值的强大,这些观察结果在局部受到不可控制的随机噪声的干扰。我们将提出的Funnol方法应用于几个实际数据集,并表明Funnol可以比FPCA获得更好的分类,尤其是在多元功能数据设置中。仿真研究表明,Funnol可提供令人满意的曲线分类和重建,而不管数据稀少度如何。

Using representations of functional data can be more convenient and beneficial in subsequent statistical models than direct observations. These representations, in a lower-dimensional space, extract and compress information from individual curves. The existing representation learning approaches in functional data analysis usually use linear mapping in parallel to those from multivariate analysis, e.g., functional principal component analysis (FPCA). However, functions, as infinite-dimensional objects, sometimes have nonlinear structures that cannot be uncovered by linear mapping. Linear methods will be more overwhelmed given multivariate functional data. For that matter, this paper proposes a functional nonlinear learning (FunNoL) method to sufficiently represent multivariate functional data in a lower-dimensional feature space. Furthermore, we merge a classification model for enriching the ability of representations in predicting curve labels. Hence, representations from FunNoL can be used for both curve reconstruction and classification. Additionally, we have endowed the proposed model with the ability to address the missing observation problem as well as to further denoise observations. The resulting representations are robust to observations that are locally disturbed by uncontrollable random noises. We apply the proposed FunNoL method to several real data sets and show that FunNoL can achieve better classifications than FPCA, especially in the multivariate functional data setting. Simulation studies have shown that FunNoL provides satisfactory curve classification and reconstruction regardless of data sparsity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源