论文标题

原位TEM实验的数据挖掘:了解纳米级骨折

Data-Mining of In-Situ TEM Experiments: Towards Understanding Nanoscale Fracture

论文作者

Steinberger, Dominik, Issa, Inas, Strobl, Rachel, Imrich, Peter J., Kiener, Daniel, Sandfeld, Stefan

论文摘要

从纳米级传感器到宏观结构的任何工程组件的寿命和性能都受到断裂过程的强烈影响。断裂本身是一个高度局部的事件。源于原子量表,是通过在裂纹尖端附近的个体原子之间断裂的。然而,这些过程与缺陷(例如位错或晶界)相互作用,并在更大的长度尺度上影响现象,最终导致宏观行为和工程尺度的断裂特性。这种复杂的相互作用是识别在裂纹尖端下发生的原子结构和能量过程的基本原因仍然是长期以来尚未解决的挑战。 我们开发了一种新的分析方法,以结合裂纹尖端的纳米级变形过程的定量原位观察,并具有三维脱位结构和高级计算分析的重建,以解决延性金属中的可塑性和断裂起始。我们的组合方法揭示了脱位成核,它们的相互作用过程和局部内部应力状态的细节,所有这些状态以前都无法实验。这使我们能够根据位错水平上的局部裂纹驱动力来描述断裂过程,并具有高保真度,这为对材料中局部故障过程的更好理解和控制铺平了道路。

The lifetime and performance of any engineering component, from nanoscale sensors to macroscopic structures, are strongly influenced by fracture processes. Fracture itself is a highly localized event; originating at the atomic scale by bond breaking between individual atoms close to the crack tip. These processes, however, interact with defects such as dislocations or grain boundaries and influence phenomena on much larger length scales, ultimately giving rise to macroscopic behavior and engineering-scale fracture properties. This complex interplay is the fundamental reason why identifying the atomistic structural and energetic processes occurring at a crack tip remains a longstanding and still unsolved challenge. We develop a new analysis approach for combining quantitative in-situ observations of nanoscale deformation processes at a crack tip with three-dimensional reconstruction of the dislocation structure and advanced computational analysis to address plasticity and fracture initiation in a ductile metal. Our combinatorial approach reveals details of dislocation nucleation, their interaction process, and the local internal stress state, all of which were previously inaccessible to experiments. This enables us to describe fracture processes based on local crack driving forces on a dislocation level with a high fidelity that paves the way towards a better understanding and control of local failure processes in materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源