论文标题

在Bose-Einstein冷凝物中进行动态量子反应的数字解决方案

Number-conserving solution for dynamical quantum backreaction in a Bose-Einstein condensate

论文作者

Baak, Sang-Shin, Ribeiro, Caio C. Holanda, Fischer, Uwe R.

论文摘要

我们提供了一种持续的方法,可以将小量子波动的反应问题置于经典背景上,以实现Bose-Einstein冷凝物的精确可溶性动力学演化,这在超速气体实验室实验可以实现。施加在量子起源的气体上的力密度被唯一地识别为与经典的欧拉力密度偏差。然后,为有限尺寸均匀密度冷凝物的特定示例探索了反应方程,最初是在静止的。通过假设冷凝水从非交互制度开始,并以其基态开始,我们固定了明确定义的初始真空条件,该条件是通过即时打开相互作用来驱动平衡的。这种初始真空的假设解释了选择用于相互作用冷凝物的真空状态的歧义,这是由于相扩散和随之而来的冷凝水崩溃所致。作为一个主要发现,我们揭示了冷凝水云的时间演变会导致冷凝物密度校正,通常不能从量子耗尽的测量中删除,以探测总密度的功率谱。此外,虽然冷凝物最初处于静止状态,但量子波动会产生非平凡的冷凝物通量,我们从中证明了量子力密度减弱了经典的欧拉尔力。最后,粒子密度作为静止凝聚力的时间的知识决定了$ n^0 $,其中$ n $是粒子总数,量子力密度,因此为获得实验可访问的量子反射效应提供了可行的途径。

We provide a number-conserving approach to the backreaction problem of small quantum fluctuations onto a classical background for the exactly soluble dynamical evolution of a Bose-Einstein condensate, experimentally realizable in the ultracold gas laboratory. A force density exerted on the gas particles which is of quantum origin is uniquely identified as the deviation from the classical Eulerian force density. The backreaction equations are then explored for the specific example of a finite size uniform density condensate initially at rest. By assuming that the condensate starts from a non-interacting regime, and in its ground state, we fix a well-defined initial vacuum condition, which is driven out-of-equilibrium by instantaneously turning on the interactions. The assumption of this initial vacuum accounts for the ambiguity in choosing a vacuum state for interacting condensates, which is due to phase diffusion and the ensuing condensate collapse. As a major finding, we reveal that the time evolution of the condensate cloud leads to condensate density corrections that cannot in general be disentangled from the quantum depletion in measurements probing the power spectrum of the total density. Furthermore, while the condensate is initially at rest, quantum fluctuations give rise to a nontrivial condensate flux, from which we demonstrate that the quantum force density attenuates the classical Eulerian force. Finally, the knowledge of the particle density as a function of time for a condensate at rest determines, to order $N^0$, where $N$ is the total number of particles, the quantum force density, thus offering a viable route for obtaining experimentally accessible quantum backreaction effects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源